Database
BASIC CATEGORY THEORY
Categories
Isomorphic objects
cicref
Next ⟩
ciclcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
cicref
Description:
Isomorphism is reflexive.
(Contributed by
AV
, 5-Apr-2020)
Ref
Expression
Assertion
cicref
⊢
C
∈
Cat
∧
O
∈
Base
C
→
O
≃
𝑐
⁡
C
O
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Iso
⁡
C
=
Iso
⁡
C
2
eqid
⊢
Base
C
=
Base
C
3
simpl
⊢
C
∈
Cat
∧
O
∈
Base
C
→
C
∈
Cat
4
simpr
⊢
C
∈
Cat
∧
O
∈
Base
C
→
O
∈
Base
C
5
eqid
⊢
Id
⁡
C
=
Id
⁡
C
6
2
5
3
4
idiso
⊢
C
∈
Cat
∧
O
∈
Base
C
→
Id
⁡
C
⁡
O
∈
O
Iso
⁡
C
O
7
1
2
3
4
4
6
brcici
⊢
C
∈
Cat
∧
O
∈
Base
C
→
O
≃
𝑐
⁡
C
O