Metamath Proof Explorer


Theorem cicref

Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicref C Cat O Base C O 𝑐 C O

Proof

Step Hyp Ref Expression
1 eqid Iso C = Iso C
2 eqid Base C = Base C
3 simpl C Cat O Base C C Cat
4 simpr C Cat O Base C O Base C
5 eqid Id C = Id C
6 2 5 3 4 idiso C Cat O Base C Id C O O Iso C O
7 1 2 3 4 4 6 brcici C Cat O Base C O 𝑐 C O