Metamath Proof Explorer


Theorem cicsym

Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicsym C Cat R 𝑐 C S S 𝑐 C R

Proof

Step Hyp Ref Expression
1 cicrcl C Cat R 𝑐 C S S Base C
2 ciclcl C Cat R 𝑐 C S R Base C
3 eqid Iso C = Iso C
4 eqid Base C = Base C
5 simpl C Cat S Base C R Base C C Cat
6 simpr S Base C R Base C R Base C
7 6 adantl C Cat S Base C R Base C R Base C
8 simpl S Base C R Base C S Base C
9 8 adantl C Cat S Base C R Base C S Base C
10 3 4 5 7 9 cic C Cat S Base C R Base C R 𝑐 C S f f R Iso C S
11 eqid Inv C = Inv C
12 4 11 5 7 9 3 isoval C Cat S Base C R Base C R Iso C S = dom R Inv C S
13 4 11 5 9 7 invsym2 C Cat S Base C R Base C S Inv C R -1 = R Inv C S
14 13 eqcomd C Cat S Base C R Base C R Inv C S = S Inv C R -1
15 14 dmeqd C Cat S Base C R Base C dom R Inv C S = dom S Inv C R -1
16 df-rn ran S Inv C R = dom S Inv C R -1
17 15 16 eqtr4di C Cat S Base C R Base C dom R Inv C S = ran S Inv C R
18 12 17 eqtrd C Cat S Base C R Base C R Iso C S = ran S Inv C R
19 18 eleq2d C Cat S Base C R Base C f R Iso C S f ran S Inv C R
20 vex f V
21 elrng f V f ran S Inv C R g g S Inv C R f
22 20 21 mp1i C Cat S Base C R Base C f ran S Inv C R g g S Inv C R f
23 19 22 bitrd C Cat S Base C R Base C f R Iso C S g g S Inv C R f
24 df-br g S Inv C R f g f S Inv C R
25 24 exbii g g S Inv C R f g g f S Inv C R
26 vex g V
27 26 20 opeldm g f S Inv C R g dom S Inv C R
28 4 11 5 9 7 3 isoval C Cat S Base C R Base C S Iso C R = dom S Inv C R
29 28 eqcomd C Cat S Base C R Base C dom S Inv C R = S Iso C R
30 29 eleq2d C Cat S Base C R Base C g dom S Inv C R g S Iso C R
31 5 adantr C Cat S Base C R Base C g S Iso C R C Cat
32 9 adantr C Cat S Base C R Base C g S Iso C R S Base C
33 7 adantr C Cat S Base C R Base C g S Iso C R R Base C
34 simpr C Cat S Base C R Base C g S Iso C R g S Iso C R
35 3 4 31 32 33 34 brcici C Cat S Base C R Base C g S Iso C R S 𝑐 C R
36 35 ex C Cat S Base C R Base C g S Iso C R S 𝑐 C R
37 30 36 sylbid C Cat S Base C R Base C g dom S Inv C R S 𝑐 C R
38 27 37 syl5com g f S Inv C R C Cat S Base C R Base C S 𝑐 C R
39 38 exlimiv g g f S Inv C R C Cat S Base C R Base C S 𝑐 C R
40 39 com12 C Cat S Base C R Base C g g f S Inv C R S 𝑐 C R
41 25 40 syl5bi C Cat S Base C R Base C g g S Inv C R f S 𝑐 C R
42 23 41 sylbid C Cat S Base C R Base C f R Iso C S S 𝑐 C R
43 42 exlimdv C Cat S Base C R Base C f f R Iso C S S 𝑐 C R
44 10 43 sylbid C Cat S Base C R Base C R 𝑐 C S S 𝑐 C R
45 44 impancom C Cat R 𝑐 C S S Base C R Base C S 𝑐 C R
46 1 2 45 mp2and C Cat R 𝑐 C S S 𝑐 C R