Metamath Proof Explorer


Theorem cictr

Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cictr C Cat R 𝑐 C S S 𝑐 C T R 𝑐 C T

Proof

Step Hyp Ref Expression
1 ciclcl C Cat R 𝑐 C S R Base C
2 cicrcl C Cat R 𝑐 C S S Base C
3 1 2 jca C Cat R 𝑐 C S R Base C S Base C
4 3 ex C Cat R 𝑐 C S R Base C S Base C
5 cicrcl C Cat S 𝑐 C T T Base C
6 5 ex C Cat S 𝑐 C T T Base C
7 4 6 anim12d C Cat R 𝑐 C S S 𝑐 C T R Base C S Base C T Base C
8 7 3impib C Cat R 𝑐 C S S 𝑐 C T R Base C S Base C T Base C
9 eqid Iso C = Iso C
10 eqid Base C = Base C
11 simpl C Cat R Base C S Base C T Base C C Cat
12 simpll R Base C S Base C T Base C R Base C
13 12 adantl C Cat R Base C S Base C T Base C R Base C
14 simplr R Base C S Base C T Base C S Base C
15 14 adantl C Cat R Base C S Base C T Base C S Base C
16 9 10 11 13 15 cic C Cat R Base C S Base C T Base C R 𝑐 C S f f R Iso C S
17 simprr C Cat R Base C S Base C T Base C T Base C
18 9 10 11 15 17 cic C Cat R Base C S Base C T Base C S 𝑐 C T g g S Iso C T
19 16 18 anbi12d C Cat R Base C S Base C T Base C R 𝑐 C S S 𝑐 C T f f R Iso C S g g S Iso C T
20 11 adantl g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C C Cat
21 13 adantl g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C R Base C
22 17 adantl g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C T Base C
23 eqid comp C = comp C
24 15 adantl g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C S Base C
25 simplr g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C f R Iso C S
26 simpll g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C g S Iso C T
27 10 23 9 20 21 24 22 25 26 isoco g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C g R S comp C T f R Iso C T
28 9 10 20 21 22 27 brcici g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C R 𝑐 C T
29 28 ex g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C R 𝑐 C T
30 29 ex g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C R 𝑐 C T
31 30 exlimiv g g S Iso C T f R Iso C S C Cat R Base C S Base C T Base C R 𝑐 C T
32 31 com12 f R Iso C S g g S Iso C T C Cat R Base C S Base C T Base C R 𝑐 C T
33 32 exlimiv f f R Iso C S g g S Iso C T C Cat R Base C S Base C T Base C R 𝑐 C T
34 33 imp f f R Iso C S g g S Iso C T C Cat R Base C S Base C T Base C R 𝑐 C T
35 34 com12 C Cat R Base C S Base C T Base C f f R Iso C S g g S Iso C T R 𝑐 C T
36 19 35 sylbid C Cat R Base C S Base C T Base C R 𝑐 C S S 𝑐 C T R 𝑐 C T
37 36 ex C Cat R Base C S Base C T Base C R 𝑐 C S S 𝑐 C T R 𝑐 C T
38 37 com23 C Cat R 𝑐 C S S 𝑐 C T R Base C S Base C T Base C R 𝑐 C T
39 38 3impib C Cat R 𝑐 C S S 𝑐 C T R Base C S Base C T Base C R 𝑐 C T
40 8 39 mpd C Cat R 𝑐 C S S 𝑐 C T R 𝑐 C T