Step |
Hyp |
Ref |
Expression |
1 |
|
ciclcl |
|
2 |
|
cicrcl |
|
3 |
1 2
|
jca |
|
4 |
3
|
ex |
|
5 |
|
cicrcl |
|
6 |
5
|
ex |
|
7 |
4 6
|
anim12d |
|
8 |
7
|
3impib |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
simpl |
|
12 |
|
simpll |
|
13 |
12
|
adantl |
|
14 |
|
simplr |
|
15 |
14
|
adantl |
|
16 |
9 10 11 13 15
|
cic |
|
17 |
|
simprr |
|
18 |
9 10 11 15 17
|
cic |
|
19 |
16 18
|
anbi12d |
|
20 |
11
|
adantl |
|
21 |
13
|
adantl |
|
22 |
17
|
adantl |
|
23 |
|
eqid |
|
24 |
15
|
adantl |
|
25 |
|
simplr |
|
26 |
|
simpll |
|
27 |
10 23 9 20 21 24 22 25 26
|
isoco |
|
28 |
9 10 20 21 22 27
|
brcici |
|
29 |
28
|
ex |
|
30 |
29
|
ex |
|
31 |
30
|
exlimiv |
|
32 |
31
|
com12 |
|
33 |
32
|
exlimiv |
|
34 |
33
|
imp |
|
35 |
34
|
com12 |
|
36 |
19 35
|
sylbid |
|
37 |
36
|
ex |
|
38 |
37
|
com23 |
|
39 |
38
|
3impib |
|
40 |
8 39
|
mpd |
|