Metamath Proof Explorer


Theorem cidffn

Description: The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Assertion cidffn Id Fn Cat

Proof

Step Hyp Ref Expression
1 vex b V
2 1 mptex x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f V
3 2 csbex comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f V
4 3 csbex Hom c / h comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f V
5 4 csbex Base c / b Hom c / h comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f V
6 df-cid Id = c Cat Base c / b Hom c / h comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f
7 5 6 fnmpti Id Fn Cat