Metamath Proof Explorer


Theorem cidfn

Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses cidfn.b B = Base C
cidfn.i 1 ˙ = Id C
Assertion cidfn C Cat 1 ˙ Fn B

Proof

Step Hyp Ref Expression
1 cidfn.b B = Base C
2 cidfn.i 1 ˙ = Id C
3 riotaex ι g x Hom C x | y B f y Hom C x g y x comp C x f = f f x Hom C y f x x comp C y g = f V
4 eqid x B ι g x Hom C x | y B f y Hom C x g y x comp C x f = f f x Hom C y f x x comp C y g = f = x B ι g x Hom C x | y B f y Hom C x g y x comp C x f = f f x Hom C y f x x comp C y g = f
5 3 4 fnmpti x B ι g x Hom C x | y B f y Hom C x g y x comp C x f = f f x Hom C y f x x comp C y g = f Fn B
6 eqid Hom C = Hom C
7 eqid comp C = comp C
8 id C Cat C Cat
9 1 6 7 8 2 cidfval C Cat 1 ˙ = x B ι g x Hom C x | y B f y Hom C x g y x comp C x f = f f x Hom C y f x x comp C y g = f
10 9 fneq1d C Cat 1 ˙ Fn B x B ι g x Hom C x | y B f y Hom C x g y x comp C x f = f f x Hom C y f x x comp C y g = f Fn B
11 5 10 mpbiri C Cat 1 ˙ Fn B