| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cidfval.b |  | 
						
							| 2 |  | cidfval.h |  | 
						
							| 3 |  | cidfval.o |  | 
						
							| 4 |  | cidfval.c |  | 
						
							| 5 |  | cidfval.i |  | 
						
							| 6 |  | fvexd |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 1 | eqtr4di |  | 
						
							| 9 |  | fvexd |  | 
						
							| 10 |  | simpl |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 | 11 2 | eqtr4di |  | 
						
							| 13 |  | fvexd |  | 
						
							| 14 |  | simpll |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 15 3 | eqtr4di |  | 
						
							| 17 |  | simpllr |  | 
						
							| 18 |  | simplr |  | 
						
							| 19 | 18 | oveqd |  | 
						
							| 20 | 18 | oveqd |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | oveqd |  | 
						
							| 23 | 22 | oveqd |  | 
						
							| 24 | 23 | eqeq1d |  | 
						
							| 25 | 20 24 | raleqbidv |  | 
						
							| 26 | 18 | oveqd |  | 
						
							| 27 | 21 | oveqd |  | 
						
							| 28 | 27 | oveqd |  | 
						
							| 29 | 28 | eqeq1d |  | 
						
							| 30 | 26 29 | raleqbidv |  | 
						
							| 31 | 25 30 | anbi12d |  | 
						
							| 32 | 17 31 | raleqbidv |  | 
						
							| 33 | 19 32 | riotaeqbidv |  | 
						
							| 34 | 17 33 | mpteq12dv |  | 
						
							| 35 | 13 16 34 | csbied2 |  | 
						
							| 36 | 9 12 35 | csbied2 |  | 
						
							| 37 | 6 8 36 | csbied2 |  | 
						
							| 38 |  | df-cid |  | 
						
							| 39 | 37 38 1 | mptfvmpt |  | 
						
							| 40 | 4 39 | syl |  | 
						
							| 41 | 5 40 | eqtrid |  |