Step |
Hyp |
Ref |
Expression |
1 |
|
catpropd.1 |
|
2 |
|
catpropd.2 |
|
3 |
|
catpropd.3 |
|
4 |
|
catpropd.4 |
|
5 |
1
|
homfeqbas |
|
6 |
5
|
adantr |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1
|
ad4antr |
|
11 |
|
simpr |
|
12 |
|
simpllr |
|
13 |
7 8 9 10 11 12
|
homfeqval |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
1
|
ad5antr |
|
17 |
2
|
ad5antr |
|
18 |
|
simplr |
|
19 |
|
simp-4r |
|
20 |
|
simpr |
|
21 |
|
simpllr |
|
22 |
7 8 14 15 16 17 18 19 19 20 21
|
comfeqval |
|
23 |
22
|
eqeq1d |
|
24 |
13 23
|
raleqbidva |
|
25 |
7 8 9 10 12 11
|
homfeqval |
|
26 |
10
|
adantr |
|
27 |
2
|
ad5antr |
|
28 |
12
|
adantr |
|
29 |
|
simplr |
|
30 |
|
simpllr |
|
31 |
|
simpr |
|
32 |
7 8 14 15 26 27 28 28 29 30 31
|
comfeqval |
|
33 |
32
|
eqeq1d |
|
34 |
25 33
|
raleqbidva |
|
35 |
24 34
|
anbi12d |
|
36 |
35
|
ralbidva |
|
37 |
36
|
riotabidva |
|
38 |
1
|
ad2antrr |
|
39 |
|
simpr |
|
40 |
7 8 9 38 39 39
|
homfeqval |
|
41 |
5
|
ad2antrr |
|
42 |
41
|
raleqdv |
|
43 |
40 42
|
riotaeqbidv |
|
44 |
37 43
|
eqtrd |
|
45 |
6 44
|
mpteq12dva |
|
46 |
|
simpr |
|
47 |
|
eqid |
|
48 |
7 8 14 46 47
|
cidfval |
|
49 |
|
eqid |
|
50 |
1 2 3 4
|
catpropd |
|
51 |
50
|
biimpa |
|
52 |
|
eqid |
|
53 |
49 9 15 51 52
|
cidfval |
|
54 |
45 48 53
|
3eqtr4d |
|
55 |
|
simpr |
|
56 |
|
cidffn |
|
57 |
56
|
fndmi |
|
58 |
57
|
eleq2i |
|
59 |
55 58
|
sylnibr |
|
60 |
|
ndmfv |
|
61 |
59 60
|
syl |
|
62 |
57
|
eleq2i |
|
63 |
50 62
|
bitr4di |
|
64 |
63
|
notbid |
|
65 |
64
|
biimpa |
|
66 |
|
ndmfv |
|
67 |
65 66
|
syl |
|
68 |
61 67
|
eqtr4d |
|
69 |
54 68
|
pm2.61dan |
|