| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catpropd.1 |
|
| 2 |
|
catpropd.2 |
|
| 3 |
|
catpropd.3 |
|
| 4 |
|
catpropd.4 |
|
| 5 |
1
|
homfeqbas |
|
| 6 |
5
|
adantr |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
1
|
ad4antr |
|
| 11 |
|
simpr |
|
| 12 |
|
simpllr |
|
| 13 |
7 8 9 10 11 12
|
homfeqval |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
1
|
ad5antr |
|
| 17 |
2
|
ad5antr |
|
| 18 |
|
simplr |
|
| 19 |
|
simp-4r |
|
| 20 |
|
simpr |
|
| 21 |
|
simpllr |
|
| 22 |
7 8 14 15 16 17 18 19 19 20 21
|
comfeqval |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
13 23
|
raleqbidva |
|
| 25 |
7 8 9 10 12 11
|
homfeqval |
|
| 26 |
10
|
adantr |
|
| 27 |
2
|
ad5antr |
|
| 28 |
12
|
adantr |
|
| 29 |
|
simplr |
|
| 30 |
|
simpllr |
|
| 31 |
|
simpr |
|
| 32 |
7 8 14 15 26 27 28 28 29 30 31
|
comfeqval |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
25 33
|
raleqbidva |
|
| 35 |
24 34
|
anbi12d |
|
| 36 |
35
|
ralbidva |
|
| 37 |
36
|
riotabidva |
|
| 38 |
1
|
ad2antrr |
|
| 39 |
|
simpr |
|
| 40 |
7 8 9 38 39 39
|
homfeqval |
|
| 41 |
5
|
ad2antrr |
|
| 42 |
41
|
raleqdv |
|
| 43 |
40 42
|
riotaeqbidv |
|
| 44 |
37 43
|
eqtrd |
|
| 45 |
6 44
|
mpteq12dva |
|
| 46 |
|
simpr |
|
| 47 |
|
eqid |
|
| 48 |
7 8 14 46 47
|
cidfval |
|
| 49 |
|
eqid |
|
| 50 |
1 2 3 4
|
catpropd |
|
| 51 |
50
|
biimpa |
|
| 52 |
|
eqid |
|
| 53 |
49 9 15 51 52
|
cidfval |
|
| 54 |
45 48 53
|
3eqtr4d |
|
| 55 |
|
simpr |
|
| 56 |
|
cidffn |
|
| 57 |
56
|
fndmi |
|
| 58 |
57
|
eleq2i |
|
| 59 |
55 58
|
sylnibr |
|
| 60 |
|
ndmfv |
|
| 61 |
59 60
|
syl |
|
| 62 |
57
|
eleq2i |
|
| 63 |
50 62
|
bitr4di |
|
| 64 |
63
|
notbid |
|
| 65 |
64
|
biimpa |
|
| 66 |
|
ndmfv |
|
| 67 |
65 66
|
syl |
|
| 68 |
61 67
|
eqtr4d |
|
| 69 |
54 68
|
pm2.61dan |
|