Metamath Proof Explorer


Theorem circgrp

Description: The circle group T is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by Mario Carneiro, 13-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses circgrp.1 C = abs -1 1
circgrp.2 T = mulGrp fld 𝑠 C
Assertion circgrp T Abel

Proof

Step Hyp Ref Expression
1 circgrp.1 C = abs -1 1
2 circgrp.2 T = mulGrp fld 𝑠 C
3 oveq2 x = y i x = i y
4 3 fveq2d x = y e i x = e i y
5 4 cbvmptv x e i x = y e i y
6 5 1 efifo x e i x : onto C
7 forn x e i x : onto C ran x e i x = C
8 6 7 ax-mp ran x e i x = C
9 8 eqcomi C = ran x e i x
10 9 oveq2i mulGrp fld 𝑠 C = mulGrp fld 𝑠 ran x e i x
11 2 10 eqtri T = mulGrp fld 𝑠 ran x e i x
12 ax-icn i
13 12 a1i i
14 resubdrg SubRing fld fld DivRing
15 14 simpli SubRing fld
16 subrgsubg SubRing fld SubGrp fld
17 15 16 ax-mp SubGrp fld
18 17 a1i SubGrp fld
19 5 11 13 18 efabl T Abel
20 19 mptru T Abel