Metamath Proof Explorer


Theorem circlemeth

Description: The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses circlemeth.n φ N 0
circlemeth.s φ S
circlemeth.l φ L : 0 ..^ S
Assertion circlemeth φ c repr S N a 0 ..^ S L a c a = 0 1 a 0 ..^ S L a vts N x e i 2 π -N x dx

Proof

Step Hyp Ref Expression
1 circlemeth.n φ N 0
2 circlemeth.s φ S
3 circlemeth.l φ L : 0 ..^ S
4 1 adantr φ x 0 1 N 0
5 ioossre 0 1
6 ax-resscn
7 5 6 sstri 0 1
8 7 a1i φ 0 1
9 8 sselda φ x 0 1 x
10 2 nnnn0d φ S 0
11 10 adantr φ x 0 1 S 0
12 3 adantr φ x 0 1 L : 0 ..^ S
13 4 9 11 12 vtsprod φ x 0 1 a 0 ..^ S L a vts N x = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x
14 13 oveq1d φ x 0 1 a 0 ..^ S L a vts N x e i 2 π -N x = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x
15 fzfid φ x 0 1 0 S N Fin
16 ax-icn i
17 2cn 2
18 picn π
19 17 18 mulcli 2 π
20 16 19 mulcli i 2 π
21 20 a1i φ x 0 1 i 2 π
22 1 nn0cnd φ N
23 22 negcld φ N
24 23 ralrimivw φ x 0 1 N
25 24 r19.21bi φ x 0 1 N
26 25 9 mulcld φ x 0 1 -N x
27 21 26 mulcld φ x 0 1 i 2 π -N x
28 27 efcld φ x 0 1 e i 2 π -N x
29 fz1ssnn 1 N
30 29 a1i φ x 0 1 m 0 S N 1 N
31 simpr φ m 0 S N m 0 S N
32 31 elfzelzd φ m 0 S N m
33 32 adantlr φ x 0 1 m 0 S N m
34 11 adantr φ x 0 1 m 0 S N S 0
35 fzfid φ x 0 1 m 0 S N 1 N Fin
36 30 33 34 35 reprfi φ x 0 1 m 0 S N 1 N repr S m Fin
37 fzofi 0 ..^ S Fin
38 37 a1i φ x 0 1 m 0 S N c 1 N repr S m 0 ..^ S Fin
39 1 ad3antrrr φ m 0 S N c 1 N repr S m a 0 ..^ S N 0
40 10 ad3antrrr φ m 0 S N c 1 N repr S m a 0 ..^ S S 0
41 32 zcnd φ m 0 S N m
42 41 ad2antrr φ m 0 S N c 1 N repr S m a 0 ..^ S m
43 3 ad3antrrr φ m 0 S N c 1 N repr S m a 0 ..^ S L : 0 ..^ S
44 simpr φ m 0 S N c 1 N repr S m a 0 ..^ S a 0 ..^ S
45 29 a1i φ m 0 S N c 1 N repr S m 1 N
46 32 adantr φ m 0 S N c 1 N repr S m m
47 10 ad2antrr φ m 0 S N c 1 N repr S m S 0
48 simpr φ m 0 S N c 1 N repr S m c 1 N repr S m
49 45 46 47 48 reprf φ m 0 S N c 1 N repr S m c : 0 ..^ S 1 N
50 49 ffvelrnda φ m 0 S N c 1 N repr S m a 0 ..^ S c a 1 N
51 29 50 sselid φ m 0 S N c 1 N repr S m a 0 ..^ S c a
52 39 40 42 43 44 51 breprexplemb φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a
53 52 adantl3r φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a
54 38 53 fprodcl φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a
55 20 a1i φ x 0 1 m 0 S N i 2 π
56 33 zcnd φ x 0 1 m 0 S N m
57 9 adantr φ x 0 1 m 0 S N x
58 56 57 mulcld φ x 0 1 m 0 S N m x
59 55 58 mulcld φ x 0 1 m 0 S N i 2 π m x
60 59 efcld φ x 0 1 m 0 S N e i 2 π m x
61 60 adantr φ x 0 1 m 0 S N c 1 N repr S m e i 2 π m x
62 54 61 mulcld φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x
63 36 62 fsumcl φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x
64 15 28 63 fsummulc1 φ x 0 1 m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x
65 28 adantr φ x 0 1 m 0 S N e i 2 π -N x
66 36 65 62 fsummulc1 φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x
67 65 adantr φ x 0 1 m 0 S N c 1 N repr S m e i 2 π -N x
68 54 61 67 mulassd φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x
69 27 adantr φ x 0 1 m 0 S N i 2 π -N x
70 efadd i 2 π m x i 2 π -N x e i 2 π m x + i 2 π -N x = e i 2 π m x e i 2 π -N x
71 59 69 70 syl2anc φ x 0 1 m 0 S N e i 2 π m x + i 2 π -N x = e i 2 π m x e i 2 π -N x
72 26 adantr φ x 0 1 m 0 S N -N x
73 55 58 72 adddid φ x 0 1 m 0 S N i 2 π m x + -N x = i 2 π m x + i 2 π -N x
74 25 adantr φ x 0 1 m 0 S N N
75 56 74 57 adddird φ x 0 1 m 0 S N m + -N x = m x + -N x
76 22 ad2antrr φ x 0 1 m 0 S N N
77 56 76 negsubd φ x 0 1 m 0 S N m + -N = m N
78 77 oveq1d φ x 0 1 m 0 S N m + -N x = m N x
79 75 78 eqtr3d φ x 0 1 m 0 S N m x + -N x = m N x
80 79 oveq2d φ x 0 1 m 0 S N i 2 π m x + -N x = i 2 π m N x
81 73 80 eqtr3d φ x 0 1 m 0 S N i 2 π m x + i 2 π -N x = i 2 π m N x
82 81 fveq2d φ x 0 1 m 0 S N e i 2 π m x + i 2 π -N x = e i 2 π m N x
83 71 82 eqtr3d φ x 0 1 m 0 S N e i 2 π m x e i 2 π -N x = e i 2 π m N x
84 83 oveq2d φ x 0 1 m 0 S N a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = a 0 ..^ S L a c a e i 2 π m N x
85 84 adantr φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = a 0 ..^ S L a c a e i 2 π m N x
86 68 85 eqtrd φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = a 0 ..^ S L a c a e i 2 π m N x
87 86 sumeq2dv φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x
88 66 87 eqtrd φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x
89 88 sumeq2dv φ x 0 1 m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m x e i 2 π -N x = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x
90 14 64 89 3eqtrd φ x 0 1 a 0 ..^ S L a vts N x e i 2 π -N x = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x
91 90 itgeq2dv φ 0 1 a 0 ..^ S L a vts N x e i 2 π -N x dx = 0 1 m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx
92 ioombl 0 1 dom vol
93 92 a1i φ 0 1 dom vol
94 fzfid φ 0 S N Fin
95 sumex c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x V
96 95 a1i φ x 0 1 m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x V
97 93 adantr φ m 0 S N 0 1 dom vol
98 29 a1i φ m 0 S N 1 N
99 10 adantr φ m 0 S N S 0
100 fzfid φ m 0 S N 1 N Fin
101 98 32 99 100 reprfi φ m 0 S N 1 N repr S m Fin
102 37 a1i φ m 0 S N x 0 1 c 1 N repr S m 0 ..^ S Fin
103 52 adantllr φ m 0 S N x 0 1 c 1 N repr S m a 0 ..^ S L a c a
104 102 103 fprodcl φ m 0 S N x 0 1 c 1 N repr S m a 0 ..^ S L a c a
105 56 76 subcld φ x 0 1 m 0 S N m N
106 105 57 mulcld φ x 0 1 m 0 S N m N x
107 55 106 mulcld φ x 0 1 m 0 S N i 2 π m N x
108 107 an32s φ m 0 S N x 0 1 i 2 π m N x
109 108 adantr φ m 0 S N x 0 1 c 1 N repr S m i 2 π m N x
110 109 efcld φ m 0 S N x 0 1 c 1 N repr S m e i 2 π m N x
111 104 110 mulcld φ m 0 S N x 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x
112 111 anasss φ m 0 S N x 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x
113 37 a1i φ m 0 S N c 1 N repr S m 0 ..^ S Fin
114 113 52 fprodcl φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a
115 fvex e i 2 π m N x V
116 115 a1i φ m 0 S N c 1 N repr S m x 0 1 e i 2 π m N x V
117 ioossicc 0 1 0 1
118 117 a1i φ m 0 S N 0 1 0 1
119 92 a1i φ m 0 S N 0 1 dom vol
120 115 a1i φ m 0 S N x 0 1 e i 2 π m N x V
121 0red φ m 0 S N 0
122 1red φ m 0 S N 1
123 22 adantr φ m 0 S N N
124 41 123 subcld φ m 0 S N m N
125 unitsscn 0 1
126 125 a1i φ m 0 S N 0 1
127 ssidd φ m 0 S N
128 cncfmptc m N 0 1 x 0 1 m N : 0 1 cn
129 124 126 127 128 syl3anc φ m 0 S N x 0 1 m N : 0 1 cn
130 cncfmptid 0 1 x 0 1 x : 0 1 cn
131 126 127 130 syl2anc φ m 0 S N x 0 1 x : 0 1 cn
132 129 131 mulcncf φ m 0 S N x 0 1 m N x : 0 1 cn
133 132 efmul2picn φ m 0 S N x 0 1 e i 2 π m N x : 0 1 cn
134 cniccibl 0 1 x 0 1 e i 2 π m N x : 0 1 cn x 0 1 e i 2 π m N x 𝐿 1
135 121 122 133 134 syl3anc φ m 0 S N x 0 1 e i 2 π m N x 𝐿 1
136 118 119 120 135 iblss φ m 0 S N x 0 1 e i 2 π m N x 𝐿 1
137 136 adantr φ m 0 S N c 1 N repr S m x 0 1 e i 2 π m N x 𝐿 1
138 114 116 137 iblmulc2 φ m 0 S N c 1 N repr S m x 0 1 a 0 ..^ S L a c a e i 2 π m N x 𝐿 1
139 97 101 112 138 itgfsum φ m 0 S N x 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x 𝐿 1 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = c 1 N repr S m 0 1 a 0 ..^ S L a c a e i 2 π m N x dx
140 139 simpld φ m 0 S N x 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x 𝐿 1
141 93 94 96 140 itgfsum φ x 0 1 m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x 𝐿 1 0 1 m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = m = 0 S N 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx
142 141 simprd φ 0 1 m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = m = 0 S N 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx
143 oveq2 if m N = 0 1 0 = 1 c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0 = c 1 N repr S m a 0 ..^ S L a c a 1
144 oveq2 if m N = 0 1 0 = 0 c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0 = c 1 N repr S m a 0 ..^ S L a c a 0
145 101 114 fsumcl φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a
146 145 mulid1d φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 1 = c 1 N repr S m a 0 ..^ S L a c a
147 145 mul01d φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 = 0
148 143 144 146 147 ifeq3da φ m 0 S N if m N = 0 c 1 N repr S m a 0 ..^ S L a c a 0 = c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0
149 velsn m N m = N
150 41 123 subeq0ad φ m 0 S N m N = 0 m = N
151 149 150 bitr4id φ m 0 S N m N m N = 0
152 151 ifbid φ m 0 S N if m N c 1 N repr S m a 0 ..^ S L a c a 0 = if m N = 0 c 1 N repr S m a 0 ..^ S L a c a 0
153 1 nn0zd φ N
154 153 ad2antrr φ m 0 S N c 1 N repr S m N
155 46 154 zsubcld φ m 0 S N c 1 N repr S m m N
156 itgexpif m N 0 1 e i 2 π m N x dx = if m N = 0 1 0
157 155 156 syl φ m 0 S N c 1 N repr S m 0 1 e i 2 π m N x dx = if m N = 0 1 0
158 157 oveq2d φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = a 0 ..^ S L a c a if m N = 0 1 0
159 158 sumeq2dv φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0
160 1cnd φ m 0 S N 1
161 0cnd φ m 0 S N 0
162 160 161 ifcld φ m 0 S N if m N = 0 1 0
163 101 162 114 fsummulc1 φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0 = c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0
164 159 163 eqtr4d φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = c 1 N repr S m a 0 ..^ S L a c a if m N = 0 1 0
165 148 152 164 3eqtr4rd φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = if m N c 1 N repr S m a 0 ..^ S L a c a 0
166 165 sumeq2dv φ m = 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = m = 0 S N if m N c 1 N repr S m a 0 ..^ S L a c a 0
167 0zd φ 0
168 10 nn0zd φ S
169 168 153 zmulcld φ S N
170 1 nn0ge0d φ 0 N
171 nnmulge S N 0 N S N
172 2 1 171 syl2anc φ N S N
173 167 169 153 170 172 elfzd φ N 0 S N
174 173 snssd φ N 0 S N
175 174 sselda φ m N m 0 S N
176 175 145 syldan φ m N c 1 N repr S m a 0 ..^ S L a c a
177 176 ralrimiva φ m N c 1 N repr S m a 0 ..^ S L a c a
178 94 olcd φ 0 S N 0 0 S N Fin
179 sumss2 N 0 S N m N c 1 N repr S m a 0 ..^ S L a c a 0 S N 0 0 S N Fin m N c 1 N repr S m a 0 ..^ S L a c a = m = 0 S N if m N c 1 N repr S m a 0 ..^ S L a c a 0
180 174 177 178 179 syl21anc φ m N c 1 N repr S m a 0 ..^ S L a c a = m = 0 S N if m N c 1 N repr S m a 0 ..^ S L a c a 0
181 29 a1i φ 1 N
182 fzfid φ 1 N Fin
183 181 153 10 182 reprfi φ 1 N repr S N Fin
184 37 a1i φ c 1 N repr S N 0 ..^ S Fin
185 1 ad2antrr φ c 1 N repr S N a 0 ..^ S N 0
186 10 ad2antrr φ c 1 N repr S N a 0 ..^ S S 0
187 22 ad2antrr φ c 1 N repr S N a 0 ..^ S N
188 3 ad2antrr φ c 1 N repr S N a 0 ..^ S L : 0 ..^ S
189 simpr φ c 1 N repr S N a 0 ..^ S a 0 ..^ S
190 29 a1i φ c 1 N repr S N 1 N
191 153 adantr φ c 1 N repr S N N
192 10 adantr φ c 1 N repr S N S 0
193 simpr φ c 1 N repr S N c 1 N repr S N
194 190 191 192 193 reprf φ c 1 N repr S N c : 0 ..^ S 1 N
195 194 ffvelrnda φ c 1 N repr S N a 0 ..^ S c a 1 N
196 29 195 sselid φ c 1 N repr S N a 0 ..^ S c a
197 185 186 187 188 189 196 breprexplemb φ c 1 N repr S N a 0 ..^ S L a c a
198 184 197 fprodcl φ c 1 N repr S N a 0 ..^ S L a c a
199 183 198 fsumcl φ c 1 N repr S N a 0 ..^ S L a c a
200 oveq2 m = N 1 N repr S m = 1 N repr S N
201 200 sumeq1d m = N c 1 N repr S m a 0 ..^ S L a c a = c 1 N repr S N a 0 ..^ S L a c a
202 201 sumsn N 0 c 1 N repr S N a 0 ..^ S L a c a m N c 1 N repr S m a 0 ..^ S L a c a = c 1 N repr S N a 0 ..^ S L a c a
203 1 199 202 syl2anc φ m N c 1 N repr S m a 0 ..^ S L a c a = c 1 N repr S N a 0 ..^ S L a c a
204 166 180 203 3eqtr2d φ m = 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = c 1 N repr S N a 0 ..^ S L a c a
205 139 simprd φ m 0 S N 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = c 1 N repr S m 0 1 a 0 ..^ S L a c a e i 2 π m N x dx
206 110 an32s φ m 0 S N c 1 N repr S m x 0 1 e i 2 π m N x
207 114 206 137 itgmulc2 φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = 0 1 a 0 ..^ S L a c a e i 2 π m N x dx
208 207 sumeq2dv φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx = c 1 N repr S m 0 1 a 0 ..^ S L a c a e i 2 π m N x dx
209 205 208 eqtr4d φ m 0 S N 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx
210 209 sumeq2dv φ m = 0 S N 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a 0 1 e i 2 π m N x dx
211 1 10 reprfz1 φ repr S N = 1 N repr S N
212 211 sumeq1d φ c repr S N a 0 ..^ S L a c a = c 1 N repr S N a 0 ..^ S L a c a
213 204 210 212 3eqtr4d φ m = 0 S N 0 1 c 1 N repr S m a 0 ..^ S L a c a e i 2 π m N x dx = c repr S N a 0 ..^ S L a c a
214 91 142 213 3eqtrrd φ c repr S N a 0 ..^ S L a c a = 0 1 a 0 ..^ S L a vts N x e i 2 π -N x dx