Step |
Hyp |
Ref |
Expression |
1 |
|
circlemeth.n |
|
2 |
|
circlemeth.s |
|
3 |
|
circlemeth.l |
|
4 |
1
|
adantr |
|
5 |
|
ioossre |
|
6 |
|
ax-resscn |
|
7 |
5 6
|
sstri |
|
8 |
7
|
a1i |
|
9 |
8
|
sselda |
|
10 |
2
|
nnnn0d |
|
11 |
10
|
adantr |
|
12 |
3
|
adantr |
|
13 |
4 9 11 12
|
vtsprod |
|
14 |
13
|
oveq1d |
|
15 |
|
fzfid |
|
16 |
|
ax-icn |
|
17 |
|
2cn |
|
18 |
|
picn |
|
19 |
17 18
|
mulcli |
|
20 |
16 19
|
mulcli |
|
21 |
20
|
a1i |
|
22 |
1
|
nn0cnd |
|
23 |
22
|
negcld |
|
24 |
23
|
ralrimivw |
|
25 |
24
|
r19.21bi |
|
26 |
25 9
|
mulcld |
|
27 |
21 26
|
mulcld |
|
28 |
27
|
efcld |
|
29 |
|
fz1ssnn |
|
30 |
29
|
a1i |
|
31 |
|
simpr |
|
32 |
31
|
elfzelzd |
|
33 |
32
|
adantlr |
|
34 |
11
|
adantr |
|
35 |
|
fzfid |
|
36 |
30 33 34 35
|
reprfi |
|
37 |
|
fzofi |
|
38 |
37
|
a1i |
|
39 |
1
|
ad3antrrr |
|
40 |
10
|
ad3antrrr |
|
41 |
32
|
zcnd |
|
42 |
41
|
ad2antrr |
|
43 |
3
|
ad3antrrr |
|
44 |
|
simpr |
|
45 |
29
|
a1i |
|
46 |
32
|
adantr |
|
47 |
10
|
ad2antrr |
|
48 |
|
simpr |
|
49 |
45 46 47 48
|
reprf |
|
50 |
49
|
ffvelrnda |
|
51 |
29 50
|
sselid |
|
52 |
39 40 42 43 44 51
|
breprexplemb |
|
53 |
52
|
adantl3r |
|
54 |
38 53
|
fprodcl |
|
55 |
20
|
a1i |
|
56 |
33
|
zcnd |
|
57 |
9
|
adantr |
|
58 |
56 57
|
mulcld |
|
59 |
55 58
|
mulcld |
|
60 |
59
|
efcld |
|
61 |
60
|
adantr |
|
62 |
54 61
|
mulcld |
|
63 |
36 62
|
fsumcl |
|
64 |
15 28 63
|
fsummulc1 |
|
65 |
28
|
adantr |
|
66 |
36 65 62
|
fsummulc1 |
|
67 |
65
|
adantr |
|
68 |
54 61 67
|
mulassd |
|
69 |
27
|
adantr |
|
70 |
|
efadd |
|
71 |
59 69 70
|
syl2anc |
|
72 |
26
|
adantr |
|
73 |
55 58 72
|
adddid |
|
74 |
25
|
adantr |
|
75 |
56 74 57
|
adddird |
|
76 |
22
|
ad2antrr |
|
77 |
56 76
|
negsubd |
|
78 |
77
|
oveq1d |
|
79 |
75 78
|
eqtr3d |
|
80 |
79
|
oveq2d |
|
81 |
73 80
|
eqtr3d |
|
82 |
81
|
fveq2d |
|
83 |
71 82
|
eqtr3d |
|
84 |
83
|
oveq2d |
|
85 |
84
|
adantr |
|
86 |
68 85
|
eqtrd |
|
87 |
86
|
sumeq2dv |
|
88 |
66 87
|
eqtrd |
|
89 |
88
|
sumeq2dv |
|
90 |
14 64 89
|
3eqtrd |
|
91 |
90
|
itgeq2dv |
|
92 |
|
ioombl |
|
93 |
92
|
a1i |
|
94 |
|
fzfid |
|
95 |
|
sumex |
|
96 |
95
|
a1i |
|
97 |
93
|
adantr |
|
98 |
29
|
a1i |
|
99 |
10
|
adantr |
|
100 |
|
fzfid |
|
101 |
98 32 99 100
|
reprfi |
|
102 |
37
|
a1i |
|
103 |
52
|
adantllr |
|
104 |
102 103
|
fprodcl |
|
105 |
56 76
|
subcld |
|
106 |
105 57
|
mulcld |
|
107 |
55 106
|
mulcld |
|
108 |
107
|
an32s |
|
109 |
108
|
adantr |
|
110 |
109
|
efcld |
|
111 |
104 110
|
mulcld |
|
112 |
111
|
anasss |
|
113 |
37
|
a1i |
|
114 |
113 52
|
fprodcl |
|
115 |
|
fvex |
|
116 |
115
|
a1i |
|
117 |
|
ioossicc |
|
118 |
117
|
a1i |
|
119 |
92
|
a1i |
|
120 |
115
|
a1i |
|
121 |
|
0red |
|
122 |
|
1red |
|
123 |
22
|
adantr |
|
124 |
41 123
|
subcld |
|
125 |
|
unitsscn |
|
126 |
125
|
a1i |
|
127 |
|
ssidd |
|
128 |
|
cncfmptc |
|
129 |
124 126 127 128
|
syl3anc |
|
130 |
|
cncfmptid |
|
131 |
126 127 130
|
syl2anc |
|
132 |
129 131
|
mulcncf |
|
133 |
132
|
efmul2picn |
|
134 |
|
cniccibl |
|
135 |
121 122 133 134
|
syl3anc |
|
136 |
118 119 120 135
|
iblss |
|
137 |
136
|
adantr |
|
138 |
114 116 137
|
iblmulc2 |
|
139 |
97 101 112 138
|
itgfsum |
|
140 |
139
|
simpld |
|
141 |
93 94 96 140
|
itgfsum |
|
142 |
141
|
simprd |
|
143 |
|
oveq2 |
|
144 |
|
oveq2 |
|
145 |
101 114
|
fsumcl |
|
146 |
145
|
mulid1d |
|
147 |
145
|
mul01d |
|
148 |
143 144 146 147
|
ifeq3da |
|
149 |
|
velsn |
|
150 |
41 123
|
subeq0ad |
|
151 |
149 150
|
bitr4id |
|
152 |
151
|
ifbid |
|
153 |
1
|
nn0zd |
|
154 |
153
|
ad2antrr |
|
155 |
46 154
|
zsubcld |
|
156 |
|
itgexpif |
|
157 |
155 156
|
syl |
|
158 |
157
|
oveq2d |
|
159 |
158
|
sumeq2dv |
|
160 |
|
1cnd |
|
161 |
|
0cnd |
|
162 |
160 161
|
ifcld |
|
163 |
101 162 114
|
fsummulc1 |
|
164 |
159 163
|
eqtr4d |
|
165 |
148 152 164
|
3eqtr4rd |
|
166 |
165
|
sumeq2dv |
|
167 |
|
0zd |
|
168 |
10
|
nn0zd |
|
169 |
168 153
|
zmulcld |
|
170 |
1
|
nn0ge0d |
|
171 |
|
nnmulge |
|
172 |
2 1 171
|
syl2anc |
|
173 |
167 169 153 170 172
|
elfzd |
|
174 |
173
|
snssd |
|
175 |
174
|
sselda |
|
176 |
175 145
|
syldan |
|
177 |
176
|
ralrimiva |
|
178 |
94
|
olcd |
|
179 |
|
sumss2 |
|
180 |
174 177 178 179
|
syl21anc |
|
181 |
29
|
a1i |
|
182 |
|
fzfid |
|
183 |
181 153 10 182
|
reprfi |
|
184 |
37
|
a1i |
|
185 |
1
|
ad2antrr |
|
186 |
10
|
ad2antrr |
|
187 |
22
|
ad2antrr |
|
188 |
3
|
ad2antrr |
|
189 |
|
simpr |
|
190 |
29
|
a1i |
|
191 |
153
|
adantr |
|
192 |
10
|
adantr |
|
193 |
|
simpr |
|
194 |
190 191 192 193
|
reprf |
|
195 |
194
|
ffvelrnda |
|
196 |
29 195
|
sselid |
|
197 |
185 186 187 188 189 196
|
breprexplemb |
|
198 |
184 197
|
fprodcl |
|
199 |
183 198
|
fsumcl |
|
200 |
|
oveq2 |
|
201 |
200
|
sumeq1d |
|
202 |
201
|
sumsn |
|
203 |
1 199 202
|
syl2anc |
|
204 |
166 180 203
|
3eqtr2d |
|
205 |
139
|
simprd |
|
206 |
110
|
an32s |
|
207 |
114 206 137
|
itgmulc2 |
|
208 |
207
|
sumeq2dv |
|
209 |
205 208
|
eqtr4d |
|
210 |
209
|
sumeq2dv |
|
211 |
1 10
|
reprfz1 |
|
212 |
211
|
sumeq1d |
|
213 |
204 210 212
|
3eqtr4d |
|
214 |
91 142 213
|
3eqtrrd |
|