Step |
Hyp |
Ref |
Expression |
1 |
|
circlemethnat.r |
|
2 |
|
circlemethnat.f |
|
3 |
|
circlemethnat.n |
|
4 |
|
circlemethnat.a |
|
5 |
|
circlemethnat.s |
|
6 |
|
nnex |
|
7 |
|
indf |
|
8 |
6 4 7
|
mp2an |
|
9 |
|
pr01ssre |
|
10 |
|
ax-resscn |
|
11 |
9 10
|
sstri |
|
12 |
|
fss |
|
13 |
8 11 12
|
mp2an |
|
14 |
|
cnex |
|
15 |
14 6
|
elmap |
|
16 |
13 15
|
mpbir |
|
17 |
16
|
elexi |
|
18 |
17
|
fvconst2 |
|
19 |
18
|
adantl |
|
20 |
19
|
fveq1d |
|
21 |
20
|
prodeq2dv |
|
22 |
21
|
sumeq2dv |
|
23 |
4
|
a1i |
|
24 |
3
|
a1i |
|
25 |
5
|
a1i |
|
26 |
25
|
nnnn0d |
|
27 |
23 24 26
|
hashrepr |
|
28 |
22 27
|
eqtr4d |
|
29 |
1 28
|
eqtr4id |
|
30 |
16
|
fconst6 |
|
31 |
30
|
a1i |
|
32 |
24 25 31
|
circlemeth |
|
33 |
|
fzofi |
|
34 |
33
|
a1i |
|
35 |
3
|
a1i |
|
36 |
|
ioossre |
|
37 |
36 10
|
sstri |
|
38 |
37
|
a1i |
|
39 |
38
|
sselda |
|
40 |
13
|
a1i |
|
41 |
35 39 40
|
vtscl |
|
42 |
2 41
|
eqeltrid |
|
43 |
|
fprodconst |
|
44 |
34 42 43
|
syl2anc |
|
45 |
18
|
adantl |
|
46 |
45
|
oveq1d |
|
47 |
46
|
fveq1d |
|
48 |
2 47
|
eqtr4id |
|
49 |
48
|
prodeq2dv |
|
50 |
26
|
adantr |
|
51 |
|
hashfzo0 |
|
52 |
50 51
|
syl |
|
53 |
52
|
oveq2d |
|
54 |
44 49 53
|
3eqtr3d |
|
55 |
54
|
oveq1d |
|
56 |
55
|
itgeq2dv |
|
57 |
29 32 56
|
3eqtrd |
|
58 |
57
|
mptru |
|