Step |
Hyp |
Ref |
Expression |
1 |
|
circlevma.n |
|
2 |
|
3nn |
|
3 |
2
|
a1i |
|
4 |
|
vmaf |
|
5 |
|
ax-resscn |
|
6 |
|
fss |
|
7 |
4 5 6
|
mp2an |
|
8 |
|
cnex |
|
9 |
|
nnex |
|
10 |
|
elmapg |
|
11 |
8 9 10
|
mp2an |
|
12 |
7 11
|
mpbir |
|
13 |
12
|
fconst6 |
|
14 |
13
|
a1i |
|
15 |
1 3 14
|
circlemeth |
|
16 |
|
c0ex |
|
17 |
16
|
tpid1 |
|
18 |
|
fzo0to3tp |
|
19 |
17 18
|
eleqtrri |
|
20 |
|
eleq1 |
|
21 |
19 20
|
mpbiri |
|
22 |
12
|
elexi |
|
23 |
22
|
fvconst2 |
|
24 |
21 23
|
syl |
|
25 |
|
fveq2 |
|
26 |
24 25
|
fveq12d |
|
27 |
|
1ex |
|
28 |
27
|
tpid2 |
|
29 |
28 18
|
eleqtrri |
|
30 |
|
eleq1 |
|
31 |
29 30
|
mpbiri |
|
32 |
31 23
|
syl |
|
33 |
|
fveq2 |
|
34 |
32 33
|
fveq12d |
|
35 |
|
2ex |
|
36 |
35
|
tpid3 |
|
37 |
36 18
|
eleqtrri |
|
38 |
|
eleq1 |
|
39 |
37 38
|
mpbiri |
|
40 |
39 23
|
syl |
|
41 |
|
fveq2 |
|
42 |
40 41
|
fveq12d |
|
43 |
23
|
fveq1d |
|
44 |
43
|
adantl |
|
45 |
7
|
a1i |
|
46 |
|
ssidd |
|
47 |
1
|
nn0zd |
|
48 |
47
|
adantr |
|
49 |
2
|
nnnn0i |
|
50 |
49
|
a1i |
|
51 |
|
simpr |
|
52 |
46 48 50 51
|
reprf |
|
53 |
52
|
ffvelrnda |
|
54 |
45 53
|
ffvelrnd |
|
55 |
44 54
|
eqeltrd |
|
56 |
26 34 42 55
|
prodfzo03 |
|
57 |
56
|
sumeq2dv |
|
58 |
23
|
adantl |
|
59 |
58
|
oveq1d |
|
60 |
59
|
fveq1d |
|
61 |
60
|
prodeq2dv |
|
62 |
|
fzofi |
|
63 |
62
|
a1i |
|
64 |
1
|
adantr |
|
65 |
|
ioossre |
|
66 |
65 5
|
sstri |
|
67 |
66
|
a1i |
|
68 |
67
|
sselda |
|
69 |
7
|
a1i |
|
70 |
64 68 69
|
vtscl |
|
71 |
|
fprodconst |
|
72 |
63 70 71
|
syl2anc |
|
73 |
|
hashfzo0 |
|
74 |
49 73
|
ax-mp |
|
75 |
74
|
a1i |
|
76 |
75
|
oveq2d |
|
77 |
61 72 76
|
3eqtrd |
|
78 |
77
|
oveq1d |
|
79 |
78
|
itgeq2dv |
|
80 |
15 57 79
|
3eqtr3d |
|