Metamath Proof Explorer


Theorem circlevma

Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of Helfgott p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypothesis circlevma.n φ N 0
Assertion circlevma φ n repr 3 N Λ n 0 Λ n 1 Λ n 2 = 0 1 Λ vts N x 3 e i 2 π -N x dx

Proof

Step Hyp Ref Expression
1 circlevma.n φ N 0
2 3nn 3
3 2 a1i φ 3
4 vmaf Λ :
5 ax-resscn
6 fss Λ : Λ :
7 4 5 6 mp2an Λ :
8 cnex V
9 nnex V
10 elmapg V V Λ Λ :
11 8 9 10 mp2an Λ Λ :
12 7 11 mpbir Λ
13 12 fconst6 0 ..^ 3 × Λ : 0 ..^ 3
14 13 a1i φ 0 ..^ 3 × Λ : 0 ..^ 3
15 1 3 14 circlemeth φ n repr 3 N a 0 ..^ 3 0 ..^ 3 × Λ a n a = 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N x e i 2 π -N x dx
16 c0ex 0 V
17 16 tpid1 0 0 1 2
18 fzo0to3tp 0 ..^ 3 = 0 1 2
19 17 18 eleqtrri 0 0 ..^ 3
20 eleq1 a = 0 a 0 ..^ 3 0 0 ..^ 3
21 19 20 mpbiri a = 0 a 0 ..^ 3
22 12 elexi Λ V
23 22 fvconst2 a 0 ..^ 3 0 ..^ 3 × Λ a = Λ
24 21 23 syl a = 0 0 ..^ 3 × Λ a = Λ
25 fveq2 a = 0 n a = n 0
26 24 25 fveq12d a = 0 0 ..^ 3 × Λ a n a = Λ n 0
27 1ex 1 V
28 27 tpid2 1 0 1 2
29 28 18 eleqtrri 1 0 ..^ 3
30 eleq1 a = 1 a 0 ..^ 3 1 0 ..^ 3
31 29 30 mpbiri a = 1 a 0 ..^ 3
32 31 23 syl a = 1 0 ..^ 3 × Λ a = Λ
33 fveq2 a = 1 n a = n 1
34 32 33 fveq12d a = 1 0 ..^ 3 × Λ a n a = Λ n 1
35 2ex 2 V
36 35 tpid3 2 0 1 2
37 36 18 eleqtrri 2 0 ..^ 3
38 eleq1 a = 2 a 0 ..^ 3 2 0 ..^ 3
39 37 38 mpbiri a = 2 a 0 ..^ 3
40 39 23 syl a = 2 0 ..^ 3 × Λ a = Λ
41 fveq2 a = 2 n a = n 2
42 40 41 fveq12d a = 2 0 ..^ 3 × Λ a n a = Λ n 2
43 23 fveq1d a 0 ..^ 3 0 ..^ 3 × Λ a n a = Λ n a
44 43 adantl φ n repr 3 N a 0 ..^ 3 0 ..^ 3 × Λ a n a = Λ n a
45 7 a1i φ n repr 3 N a 0 ..^ 3 Λ :
46 ssidd φ n repr 3 N
47 1 nn0zd φ N
48 47 adantr φ n repr 3 N N
49 2 nnnn0i 3 0
50 49 a1i φ n repr 3 N 3 0
51 simpr φ n repr 3 N n repr 3 N
52 46 48 50 51 reprf φ n repr 3 N n : 0 ..^ 3
53 52 ffvelrnda φ n repr 3 N a 0 ..^ 3 n a
54 45 53 ffvelrnd φ n repr 3 N a 0 ..^ 3 Λ n a
55 44 54 eqeltrd φ n repr 3 N a 0 ..^ 3 0 ..^ 3 × Λ a n a
56 26 34 42 55 prodfzo03 φ n repr 3 N a 0 ..^ 3 0 ..^ 3 × Λ a n a = Λ n 0 Λ n 1 Λ n 2
57 56 sumeq2dv φ n repr 3 N a 0 ..^ 3 0 ..^ 3 × Λ a n a = n repr 3 N Λ n 0 Λ n 1 Λ n 2
58 23 adantl φ x 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a = Λ
59 58 oveq1d φ x 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N = Λ vts N
60 59 fveq1d φ x 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N x = Λ vts N x
61 60 prodeq2dv φ x 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N x = a 0 ..^ 3 Λ vts N x
62 fzofi 0 ..^ 3 Fin
63 62 a1i φ x 0 1 0 ..^ 3 Fin
64 1 adantr φ x 0 1 N 0
65 ioossre 0 1
66 65 5 sstri 0 1
67 66 a1i φ 0 1
68 67 sselda φ x 0 1 x
69 7 a1i φ x 0 1 Λ :
70 64 68 69 vtscl φ x 0 1 Λ vts N x
71 fprodconst 0 ..^ 3 Fin Λ vts N x a 0 ..^ 3 Λ vts N x = Λ vts N x 0 ..^ 3
72 63 70 71 syl2anc φ x 0 1 a 0 ..^ 3 Λ vts N x = Λ vts N x 0 ..^ 3
73 hashfzo0 3 0 0 ..^ 3 = 3
74 49 73 ax-mp 0 ..^ 3 = 3
75 74 a1i φ x 0 1 0 ..^ 3 = 3
76 75 oveq2d φ x 0 1 Λ vts N x 0 ..^ 3 = Λ vts N x 3
77 61 72 76 3eqtrd φ x 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N x = Λ vts N x 3
78 77 oveq1d φ x 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N x e i 2 π -N x = Λ vts N x 3 e i 2 π -N x
79 78 itgeq2dv φ 0 1 a 0 ..^ 3 0 ..^ 3 × Λ a vts N x e i 2 π -N x dx = 0 1 Λ vts N x 3 e i 2 π -N x dx
80 15 57 79 3eqtr3d φ n repr 3 N Λ n 0 Λ n 1 Λ n 2 = 0 1 Λ vts N x 3 e i 2 π -N x dx