Metamath Proof Explorer


Theorem circsubm

Description: The circle group T is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses circgrp.1 C = abs -1 1
circgrp.2 T = mulGrp fld 𝑠 C
Assertion circsubm C SubMnd mulGrp fld

Proof

Step Hyp Ref Expression
1 circgrp.1 C = abs -1 1
2 circgrp.2 T = mulGrp fld 𝑠 C
3 oveq2 x = y i x = i y
4 3 fveq2d x = y e i x = e i y
5 4 cbvmptv x e i x = y e i y
6 5 1 efifo x e i x : onto C
7 forn x e i x : onto C ran x e i x = C
8 6 7 ax-mp ran x e i x = C
9 8 eqcomi C = ran x e i x
10 9 oveq2i mulGrp fld 𝑠 C = mulGrp fld 𝑠 ran x e i x
11 ax-icn i
12 11 a1i i
13 resubdrg SubRing fld fld DivRing
14 13 simpli SubRing fld
15 subrgsubg SubRing fld SubGrp fld
16 14 15 ax-mp SubGrp fld
17 16 a1i SubGrp fld
18 5 10 12 17 efsubm ran x e i x SubMnd mulGrp fld
19 18 mptru ran x e i x SubMnd mulGrp fld
20 9 19 eqeltri C SubMnd mulGrp fld