Metamath Proof Explorer


Theorem cjadd

Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjadd A B A + B = A + B

Proof

Step Hyp Ref Expression
1 readd A B A + B = A + B
2 imadd A B A + B = A + B
3 2 oveq2d A B i A + B = i A + B
4 ax-icn i
5 4 a1i A B i
6 imcl A A
7 6 adantr A B A
8 7 recnd A B A
9 imcl B B
10 9 adantl A B B
11 10 recnd A B B
12 5 8 11 adddid A B i A + B = i A + i B
13 3 12 eqtrd A B i A + B = i A + i B
14 1 13 oveq12d A B A + B i A + B = A + B - i A + i B
15 recl A A
16 15 adantr A B A
17 16 recnd A B A
18 recl B B
19 18 adantl A B B
20 19 recnd A B B
21 mulcl i A i A
22 4 8 21 sylancr A B i A
23 mulcl i B i B
24 4 11 23 sylancr A B i B
25 17 20 22 24 addsub4d A B A + B - i A + i B = A i A + B - i B
26 14 25 eqtrd A B A + B i A + B = A i A + B - i B
27 addcl A B A + B
28 remim A + B A + B = A + B i A + B
29 27 28 syl A B A + B = A + B i A + B
30 remim A A = A i A
31 remim B B = B i B
32 30 31 oveqan12d A B A + B = A i A + B - i B
33 26 29 32 3eqtr4d A B A + B = A + B