Metamath Proof Explorer


Theorem cjaddd

Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φ A
readdd.2 φ B
Assertion cjaddd φ A + B = A + B

Proof

Step Hyp Ref Expression
1 recld.1 φ A
2 readdd.2 φ B
3 cjadd A B A + B = A + B
4 1 2 3 syl2anc φ A + B = A + B