Metamath Proof Explorer


Theorem cjcj

Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of Gleason p. 133. (Contributed by NM, 29-Jul-1999) (Proof shortened by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjcj A A = A

Proof

Step Hyp Ref Expression
1 cjcl A A
2 recj A A = A
3 1 2 syl A A = A
4 recj A A = A
5 3 4 eqtrd A A = A
6 imcj A A = A
7 1 6 syl A A = A
8 imcj A A = A
9 8 negeqd A A = A
10 imcl A A
11 10 recnd A A
12 11 negnegd A A = A
13 9 12 eqtrd A A = A
14 7 13 eqtrd A A = A
15 14 oveq2d A i A = i A
16 5 15 oveq12d A A + i A = A + i A
17 cjcl A A
18 replim A A = A + i A
19 1 17 18 3syl A A = A + i A
20 replim A A = A + i A
21 16 19 20 3eqtr4d A A = A