Metamath Proof Explorer


Theorem cjcn2

Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion cjcn2 A x + y + z z A < y z A < x

Proof

Step Hyp Ref Expression
1 cjf * :
2 cjcl z z
3 cjcl A A
4 subcl z A z A
5 2 3 4 syl2an z A z A
6 5 abscld z A z A
7 cjsub z A z A = z A
8 7 fveq2d z A z A = z A
9 subcl z A z A
10 9 abscjd z A z A = z A
11 8 10 eqtr3d z A z A = z A
12 6 11 eqled z A z A z A
13 1 12 cn1lem A x + y + z z A < y z A < x