Metamath Proof Explorer


Theorem cjcncf

Description: Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion cjcncf * : cn

Proof

Step Hyp Ref Expression
1 cjf * :
2 cjcn2 x y + z + w w x < z w x < y
3 2 rgen2 x y + z + w w x < z w x < y
4 ssid
5 elcncf2 * : cn * : x y + z + w w x < z w x < y
6 4 4 5 mp2an * : cn * : x y + z + w w x < z w x < y
7 1 3 6 mpbir2an * : cn