Metamath Proof Explorer


Theorem cjdiv

Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion cjdiv A B B 0 A B = A B

Proof

Step Hyp Ref Expression
1 divcl A B B 0 A B
2 cjcl A B A B
3 1 2 syl A B B 0 A B
4 simp2 A B B 0 B
5 cjcl B B
6 4 5 syl A B B 0 B
7 simp3 A B B 0 B 0
8 cjne0 B B 0 B 0
9 4 8 syl A B B 0 B 0 B 0
10 7 9 mpbid A B B 0 B 0
11 3 6 10 divcan4d A B B 0 A B B B = A B
12 cjmul A B B A B B = A B B
13 1 4 12 syl2anc A B B 0 A B B = A B B
14 divcan1 A B B 0 A B B = A
15 14 fveq2d A B B 0 A B B = A
16 13 15 eqtr3d A B B 0 A B B = A
17 16 oveq1d A B B 0 A B B B = A B
18 11 17 eqtr3d A B B 0 A B = A B