Metamath Proof Explorer


Theorem cjdivi

Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recl.1 A
readdi.2 B
Assertion cjdivi B 0 A B = A B

Proof

Step Hyp Ref Expression
1 recl.1 A
2 readdi.2 B
3 cjdiv A B B 0 A B = A B
4 1 2 3 mp3an12 B 0 A B = A B