| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | fveq2d |  | 
						
							| 3 |  | oveq2 |  | 
						
							| 4 | 2 3 | eqeq12d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 | 6 7 | eqeq12d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 | 9 | fveq2d |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 10 11 | eqeq12d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 14 15 | eqeq12d |  | 
						
							| 17 |  | exp0 |  | 
						
							| 18 | 17 | fveq2d |  | 
						
							| 19 |  | cjcl |  | 
						
							| 20 |  | exp0 |  | 
						
							| 21 |  | 1re |  | 
						
							| 22 |  | cjre |  | 
						
							| 23 | 21 22 | ax-mp |  | 
						
							| 24 | 20 23 | eqtr4di |  | 
						
							| 25 | 19 24 | syl |  | 
						
							| 26 | 18 25 | eqtr4d |  | 
						
							| 27 |  | expp1 |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 |  | expcl |  | 
						
							| 30 |  | simpl |  | 
						
							| 31 |  | cjmul |  | 
						
							| 32 | 29 30 31 | syl2anc |  | 
						
							| 33 | 28 32 | eqtrd |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | oveq1 |  | 
						
							| 36 |  | expp1 |  | 
						
							| 37 | 19 36 | sylan |  | 
						
							| 38 | 37 | eqcomd |  | 
						
							| 39 | 35 38 | sylan9eqr |  | 
						
							| 40 | 34 39 | eqtrd |  | 
						
							| 41 | 4 8 12 16 26 40 | nn0indd |  |