Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
fveq2d |
|
3 |
|
oveq2 |
|
4 |
2 3
|
eqeq12d |
|
5 |
|
oveq2 |
|
6 |
5
|
fveq2d |
|
7 |
|
oveq2 |
|
8 |
6 7
|
eqeq12d |
|
9 |
|
oveq2 |
|
10 |
9
|
fveq2d |
|
11 |
|
oveq2 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
|
oveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
|
exp0 |
|
18 |
17
|
fveq2d |
|
19 |
|
cjcl |
|
20 |
|
exp0 |
|
21 |
|
1re |
|
22 |
|
cjre |
|
23 |
21 22
|
ax-mp |
|
24 |
20 23
|
eqtr4di |
|
25 |
19 24
|
syl |
|
26 |
18 25
|
eqtr4d |
|
27 |
|
expp1 |
|
28 |
27
|
fveq2d |
|
29 |
|
expcl |
|
30 |
|
simpl |
|
31 |
|
cjmul |
|
32 |
29 30 31
|
syl2anc |
|
33 |
28 32
|
eqtrd |
|
34 |
33
|
adantr |
|
35 |
|
oveq1 |
|
36 |
|
expp1 |
|
37 |
19 36
|
sylan |
|
38 |
37
|
eqcomd |
|
39 |
35 38
|
sylan9eqr |
|
40 |
34 39
|
eqtrd |
|
41 |
4 8 12 16 26 40
|
nn0indd |
|