Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
cji
Next ⟩
cjreim
Metamath Proof Explorer
Ascii
Unicode
Theorem
cji
Description:
The complex conjugate of the imaginary unit.
(Contributed by
NM
, 26-Mar-2005)
Ref
Expression
Assertion
cji
⊢
i
‾
=
−
i
Proof
Step
Hyp
Ref
Expression
1
rei
⊢
ℜ
⁡
i
=
0
2
imi
⊢
ℑ
⁡
i
=
1
3
2
oveq2i
⊢
i
⁢
ℑ
⁡
i
=
i
⋅
1
4
ax-icn
⊢
i
∈
ℂ
5
4
mulid1i
⊢
i
⋅
1
=
i
6
3
5
eqtri
⊢
i
⁢
ℑ
⁡
i
=
i
7
1
6
oveq12i
⊢
ℜ
⁡
i
−
i
⁢
ℑ
⁡
i
=
0
−
i
8
remim
⊢
i
∈
ℂ
→
i
‾
=
ℜ
⁡
i
−
i
⁢
ℑ
⁡
i
9
4
8
ax-mp
⊢
i
‾
=
ℜ
⁡
i
−
i
⁢
ℑ
⁡
i
10
df-neg
⊢
−
i
=
0
−
i
11
7
9
10
3eqtr4i
⊢
i
‾
=
−
i