Metamath Proof Explorer


Theorem cji

Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion cji i = i

Proof

Step Hyp Ref Expression
1 rei i = 0
2 imi i = 1
3 2 oveq2i i i = i 1
4 ax-icn i
5 4 mulid1i i 1 = i
6 3 5 eqtri i i = i
7 1 6 oveq12i i i i = 0 i
8 remim i i = i i i
9 4 8 ax-mp i = i i i
10 df-neg i = 0 i
11 7 9 10 3eqtr4i i = i