Metamath Proof Explorer


Theorem cjmulval

Description: A complex number times its conjugate. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjmulval A A A = A 2 + A 2

Proof

Step Hyp Ref Expression
1 recl A A
2 1 recnd A A
3 2 sqvald A A 2 = A A
4 imcl A A
5 4 recnd A A
6 5 sqvald A A 2 = A A
7 3 6 oveq12d A A 2 + A 2 = A A + A A
8 ipcnval A A A A = A A + A A
9 8 anidms A A A = A A + A A
10 cjmulrcl A A A
11 rere A A A A = A A
12 10 11 syl A A A = A A
13 7 9 12 3eqtr2rd A A A = A 2 + A 2