Metamath Proof Explorer


Theorem cjne0d

Description: A number is nonzero iff its complex conjugate is nonzero. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φ A
cjne0d.2 φ A 0
Assertion cjne0d φ A 0

Proof

Step Hyp Ref Expression
1 recld.1 φ A
2 cjne0d.2 φ A 0
3 cjne0 A A 0 A 0
4 1 3 syl φ A 0 A 0
5 2 4 mpbid φ A 0