Metamath Proof Explorer


Theorem cjneg

Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjneg A A = A

Proof

Step Hyp Ref Expression
1 recl A A
2 1 recnd A A
3 ax-icn i
4 imcl A A
5 4 recnd A A
6 mulcl i A i A
7 3 5 6 sylancr A i A
8 2 7 neg2subd A - A - i A = i A A
9 reneg A A = A
10 imneg A A = A
11 10 oveq2d A i A = i A
12 mulneg2 i A i A = i A
13 3 5 12 sylancr A i A = i A
14 11 13 eqtrd A i A = i A
15 9 14 oveq12d A A i A = - A - i A
16 2 7 negsubdi2d A A i A = i A A
17 8 15 16 3eqtr4d A A i A = A i A
18 negcl A A
19 remim A A = A i A
20 18 19 syl A A = A i A
21 remim A A = A i A
22 21 negeqd A A = A i A
23 17 20 22 3eqtr4d A A = A