Metamath Proof Explorer


Theorem cjreb

Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjreb A A A = A

Proof

Step Hyp Ref Expression
1 recl A A
2 1 recnd A A
3 ax-icn i
4 imcl A A
5 4 recnd A A
6 mulcl i A i A
7 3 5 6 sylancr A i A
8 2 7 negsubd A A + i A = A i A
9 mulneg2 i A i A = i A
10 3 5 9 sylancr A i A = i A
11 10 oveq2d A A + i A = A + i A
12 remim A A = A i A
13 8 11 12 3eqtr4rd A A = A + i A
14 replim A A = A + i A
15 13 14 eqeq12d A A = A A + i A = A + i A
16 5 negcld A A
17 mulcl i A i A
18 3 16 17 sylancr A i A
19 2 18 7 addcand A A + i A = A + i A i A = i A
20 eqcom A = A A = A
21 5 eqnegd A A = A A = 0
22 20 21 syl5bb A A = A A = 0
23 ine0 i 0
24 3 23 pm3.2i i i 0
25 24 a1i A i i 0
26 mulcan A A i i 0 i A = i A A = A
27 16 5 25 26 syl3anc A i A = i A A = A
28 reim0b A A A = 0
29 22 27 28 3bitr4d A i A = i A A
30 15 19 29 3bitrrd A A A = A