Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
cjrebd
Metamath Proof Explorer
Description: A number is real iff it equals its complex conjugate. Proposition
10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro , 29-May-2016)
Ref
Expression
Hypotheses
recld.1
⊢ φ → A ∈ ℂ
cjrebd.2
⊢ φ → A ‾ = A
Assertion
cjrebd
⊢ φ → A ∈ ℝ
Proof
Step
Hyp
Ref
Expression
1
recld.1
⊢ φ → A ∈ ℂ
2
cjrebd.2
⊢ φ → A ‾ = A
3
cjreb
⊢ A ∈ ℂ → A ∈ ℝ ↔ A ‾ = A
4
1 3
syl
⊢ φ → A ∈ ℝ ↔ A ‾ = A
5
2 4
mpbird
⊢ φ → A ∈ ℝ