Metamath Proof Explorer


Theorem cjrebd

Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φ A
cjrebd.2 φ A = A
Assertion cjrebd φ A

Proof

Step Hyp Ref Expression
1 recld.1 φ A
2 cjrebd.2 φ A = A
3 cjreb A A A = A
4 1 3 syl φ A A = A
5 2 4 mpbird φ A