Metamath Proof Explorer


Theorem cjreim

Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005)

Ref Expression
Assertion cjreim A B A + i B = A i B

Proof

Step Hyp Ref Expression
1 recn A A
2 ax-icn i
3 recn B B
4 mulcl i B i B
5 2 3 4 sylancr B i B
6 cjadd A i B A + i B = A + i B
7 1 5 6 syl2an A B A + i B = A + i B
8 cjre A A = A
9 cjmul i B i B = i B
10 2 3 9 sylancr B i B = i B
11 cji i = i
12 11 a1i B i = i
13 cjre B B = B
14 12 13 oveq12d B i B = i B
15 mulneg1 i B i B = i B
16 2 3 15 sylancr B i B = i B
17 10 14 16 3eqtrd B i B = i B
18 8 17 oveqan12d A B A + i B = A + i B
19 negsub A i B A + i B = A i B
20 1 5 19 syl2an A B A + i B = A i B
21 7 18 20 3eqtrd A B A + i B = A i B