Metamath Proof Explorer


Theorem cjreim2

Description: The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion cjreim2 A B A i B = A + i B

Proof

Step Hyp Ref Expression
1 cjreim A B A + i B = A i B
2 1 fveq2d A B A + i B = A i B
3 simpl A B A
4 3 recnd A B A
5 ax-icn i
6 5 a1i A B i
7 simpr A B B
8 7 recnd A B B
9 6 8 mulcld A B i B
10 4 9 addcld A B A + i B
11 cjcj A + i B A + i B = A + i B
12 10 11 syl A B A + i B = A + i B
13 2 12 eqtr3d A B A i B = A + i B