Metamath Proof Explorer


Theorem cjsub

Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005)

Ref Expression
Assertion cjsub A B A B = A B

Proof

Step Hyp Ref Expression
1 negcl B B
2 cjadd A B A + B = A + B
3 1 2 sylan2 A B A + B = A + B
4 negsub A B A + B = A B
5 4 fveq2d A B A + B = A B
6 cjneg B B = B
7 6 adantl A B B = B
8 7 oveq2d A B A + B = A + B
9 cjcl A A
10 cjcl B B
11 negsub A B A + B = A B
12 9 10 11 syl2an A B A + B = A B
13 8 12 eqtrd A B A + B = A B
14 3 5 13 3eqtr3d A B A B = A B