Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
cjsub
Next ⟩
cjexp
Metamath Proof Explorer
Ascii
Unicode
Theorem
cjsub
Description:
Complex conjugate distributes over subtraction.
(Contributed by
NM
, 28-Apr-2005)
Ref
Expression
Assertion
cjsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
‾
=
A
‾
−
B
‾
Proof
Step
Hyp
Ref
Expression
1
negcl
⊢
B
∈
ℂ
→
−
B
∈
ℂ
2
cjadd
⊢
A
∈
ℂ
∧
−
B
∈
ℂ
→
A
+
−
B
‾
=
A
‾
+
−
B
‾
3
1
2
sylan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
−
B
‾
=
A
‾
+
−
B
‾
4
negsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
−
B
=
A
−
B
5
4
fveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
−
B
‾
=
A
−
B
‾
6
cjneg
⊢
B
∈
ℂ
→
−
B
‾
=
−
B
‾
7
6
adantl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
B
‾
=
−
B
‾
8
7
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
‾
+
−
B
‾
=
A
‾
+
−
B
‾
9
cjcl
⊢
A
∈
ℂ
→
A
‾
∈
ℂ
10
cjcl
⊢
B
∈
ℂ
→
B
‾
∈
ℂ
11
negsub
⊢
A
‾
∈
ℂ
∧
B
‾
∈
ℂ
→
A
‾
+
−
B
‾
=
A
‾
−
B
‾
12
9
10
11
syl2an
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
‾
+
−
B
‾
=
A
‾
−
B
‾
13
8
12
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
‾
+
−
B
‾
=
A
‾
−
B
‾
14
3
5
13
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
‾
=
A
‾
−
B
‾