Metamath Proof Explorer


Theorem cjth

Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion cjth A A + A i A A

Proof

Step Hyp Ref Expression
1 cju A ∃! x A + x i A x
2 riotasbc ∃! x A + x i A x [˙ ι x | A + x i A x / x]˙ A + x i A x
3 1 2 syl A [˙ ι x | A + x i A x / x]˙ A + x i A x
4 cjval A A = ι x | A + x i A x
5 4 sbceq1d A [˙ A / x]˙ A + x i A x [˙ ι x | A + x i A x / x]˙ A + x i A x
6 3 5 mpbird A [˙ A / x]˙ A + x i A x
7 fvex A V
8 oveq2 x = A A + x = A + A
9 8 eleq1d x = A A + x A + A
10 oveq2 x = A A x = A A
11 10 oveq2d x = A i A x = i A A
12 11 eleq1d x = A i A x i A A
13 9 12 anbi12d x = A A + x i A x A + A i A A
14 7 13 sbcie [˙ A / x]˙ A + x i A x A + A i A A
15 6 14 sylib A A + A i A A