Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
|
2 |
|
recn |
|
3 |
|
ax-icn |
|
4 |
|
recn |
|
5 |
|
mulcl |
|
6 |
3 4 5
|
sylancr |
|
7 |
|
subcl |
|
8 |
2 6 7
|
syl2an |
|
9 |
2
|
adantr |
|
10 |
6
|
adantl |
|
11 |
9 10 9
|
ppncand |
|
12 |
|
readdcl |
|
13 |
12
|
anidms |
|
14 |
13
|
adantr |
|
15 |
11 14
|
eqeltrd |
|
16 |
9 10 10
|
pnncand |
|
17 |
3
|
a1i |
|
18 |
4
|
adantl |
|
19 |
17 18 18
|
adddid |
|
20 |
16 19
|
eqtr4d |
|
21 |
20
|
oveq2d |
|
22 |
18 18
|
addcld |
|
23 |
|
mulass |
|
24 |
3 3 22 23
|
mp3an12i |
|
25 |
21 24
|
eqtr4d |
|
26 |
|
ixi |
|
27 |
|
1re |
|
28 |
27
|
renegcli |
|
29 |
26 28
|
eqeltri |
|
30 |
|
simpr |
|
31 |
30 30
|
readdcld |
|
32 |
|
remulcl |
|
33 |
29 31 32
|
sylancr |
|
34 |
25 33
|
eqeltrd |
|
35 |
|
oveq2 |
|
36 |
35
|
eleq1d |
|
37 |
|
oveq2 |
|
38 |
37
|
oveq2d |
|
39 |
38
|
eleq1d |
|
40 |
36 39
|
anbi12d |
|
41 |
40
|
rspcev |
|
42 |
8 15 34 41
|
syl12anc |
|
43 |
|
oveq1 |
|
44 |
43
|
eleq1d |
|
45 |
|
oveq1 |
|
46 |
45
|
oveq2d |
|
47 |
46
|
eleq1d |
|
48 |
44 47
|
anbi12d |
|
49 |
48
|
rexbidv |
|
50 |
42 49
|
syl5ibrcom |
|
51 |
50
|
rexlimivv |
|
52 |
1 51
|
syl |
|
53 |
|
an4 |
|
54 |
|
resubcl |
|
55 |
|
pnpcan |
|
56 |
55
|
3expb |
|
57 |
56
|
eleq1d |
|
58 |
54 57
|
syl5ib |
|
59 |
|
resubcl |
|
60 |
59
|
ancoms |
|
61 |
3
|
a1i |
|
62 |
|
subcl |
|
63 |
62
|
adantrl |
|
64 |
|
subcl |
|
65 |
64
|
adantrr |
|
66 |
61 63 65
|
subdid |
|
67 |
|
nnncan1 |
|
68 |
67
|
3com23 |
|
69 |
68
|
3expb |
|
70 |
69
|
oveq2d |
|
71 |
66 70
|
eqtr3d |
|
72 |
71
|
eleq1d |
|
73 |
60 72
|
syl5ib |
|
74 |
58 73
|
anim12d |
|
75 |
|
rimul |
|
76 |
75
|
a1i |
|
77 |
|
subeq0 |
|
78 |
77
|
biimpd |
|
79 |
78
|
adantl |
|
80 |
74 76 79
|
3syld |
|
81 |
53 80
|
syl5bi |
|
82 |
81
|
ralrimivva |
|
83 |
|
oveq2 |
|
84 |
83
|
eleq1d |
|
85 |
|
oveq2 |
|
86 |
85
|
oveq2d |
|
87 |
86
|
eleq1d |
|
88 |
84 87
|
anbi12d |
|
89 |
88
|
reu4 |
|
90 |
52 82 89
|
sylanbrc |
|