Metamath Proof Explorer


Theorem cjval

Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion cjval A A = ι x | A + x i A x

Proof

Step Hyp Ref Expression
1 oveq1 y = A y + x = A + x
2 1 eleq1d y = A y + x A + x
3 oveq1 y = A y x = A x
4 3 oveq2d y = A i y x = i A x
5 4 eleq1d y = A i y x i A x
6 2 5 anbi12d y = A y + x i y x A + x i A x
7 6 riotabidv y = A ι x | y + x i y x = ι x | A + x i A x
8 df-cj * = y ι x | y + x i y x
9 riotaex ι x | A + x i A x V
10 7 8 9 fvmpt A A = ι x | A + x i A x