Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Elementary properties of class abstractions
clabel
Next ⟩
sbab
Metamath Proof Explorer
Ascii
Unicode
Theorem
clabel
Description:
Membership of a class abstraction in another class.
(Contributed by
NM
, 17-Jan-2006)
Ref
Expression
Assertion
clabel
⊢
x
|
φ
∈
A
↔
∃
y
y
∈
A
∧
∀
x
x
∈
y
↔
φ
Proof
Step
Hyp
Ref
Expression
1
dfclel
⊢
x
|
φ
∈
A
↔
∃
y
y
=
x
|
φ
∧
y
∈
A
2
abeq2
⊢
y
=
x
|
φ
↔
∀
x
x
∈
y
↔
φ
3
2
anbi2ci
⊢
y
=
x
|
φ
∧
y
∈
A
↔
y
∈
A
∧
∀
x
x
∈
y
↔
φ
4
3
exbii
⊢
∃
y
y
=
x
|
φ
∧
y
∈
A
↔
∃
y
y
∈
A
∧
∀
x
x
∈
y
↔
φ
5
1
4
bitri
⊢
x
|
φ
∈
A
↔
∃
y
y
∈
A
∧
∀
x
x
∈
y
↔
φ