Metamath Proof Explorer


Theorem clatglb

Description: Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses clatglb.b B = Base K
clatglb.l ˙ = K
clatglb.g G = glb K
Assertion clatglb K CLat S B y S G S ˙ y z B y S z ˙ y z ˙ G S

Proof

Step Hyp Ref Expression
1 clatglb.b B = Base K
2 clatglb.l ˙ = K
3 clatglb.g G = glb K
4 simpl K CLat S B K CLat
5 1 3 clatglbcl2 K CLat S B S dom G
6 1 2 3 4 5 glbprop K CLat S B y S G S ˙ y z B y S z ˙ y z ˙ G S