Metamath Proof Explorer


Theorem clatglble

Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses clatglb.b B = Base K
clatglb.l ˙ = K
clatglb.g G = glb K
Assertion clatglble K CLat S B X S G S ˙ X

Proof

Step Hyp Ref Expression
1 clatglb.b B = Base K
2 clatglb.l ˙ = K
3 clatglb.g G = glb K
4 simp1 K CLat S B X S K CLat
5 1 3 clatglbcl2 K CLat S B S dom G
6 5 3adant3 K CLat S B X S S dom G
7 simp3 K CLat S B X S X S
8 1 2 3 4 6 7 glble K CLat S B X S G S ˙ X