Metamath Proof Explorer


Theorem clatl

Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011) TODO: use eqrelrdv2 to shorten proof and eliminate joindmss and meetdmss ?

Ref Expression
Assertion clatl K CLat K Lat

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid join K = join K
3 simpl K Poset dom lub K = 𝒫 Base K K Poset
4 1 2 3 joindmss K Poset dom lub K = 𝒫 Base K dom join K Base K × Base K
5 relxp Rel Base K × Base K
6 5 a1i K Poset dom lub K = 𝒫 Base K Rel Base K × Base K
7 opelxp x y Base K × Base K x Base K y Base K
8 vex x V
9 vex y V
10 8 9 prss x Base K y Base K x y Base K
11 7 10 sylbb x y Base K × Base K x y Base K
12 prex x y V
13 12 elpw x y 𝒫 Base K x y Base K
14 11 13 sylibr x y Base K × Base K x y 𝒫 Base K
15 eleq2 dom lub K = 𝒫 Base K x y dom lub K x y 𝒫 Base K
16 14 15 syl5ibr dom lub K = 𝒫 Base K x y Base K × Base K x y dom lub K
17 16 adantl K Poset dom lub K = 𝒫 Base K x y Base K × Base K x y dom lub K
18 eqid lub K = lub K
19 8 a1i K Poset dom lub K = 𝒫 Base K x V
20 9 a1i K Poset dom lub K = 𝒫 Base K y V
21 18 2 3 19 20 joindef K Poset dom lub K = 𝒫 Base K x y dom join K x y dom lub K
22 17 21 sylibrd K Poset dom lub K = 𝒫 Base K x y Base K × Base K x y dom join K
23 6 22 relssdv K Poset dom lub K = 𝒫 Base K Base K × Base K dom join K
24 4 23 eqssd K Poset dom lub K = 𝒫 Base K dom join K = Base K × Base K
25 24 ex K Poset dom lub K = 𝒫 Base K dom join K = Base K × Base K
26 eqid meet K = meet K
27 simpl K Poset dom glb K = 𝒫 Base K K Poset
28 1 26 27 meetdmss K Poset dom glb K = 𝒫 Base K dom meet K Base K × Base K
29 5 a1i K Poset dom glb K = 𝒫 Base K Rel Base K × Base K
30 eleq2 dom glb K = 𝒫 Base K x y dom glb K x y 𝒫 Base K
31 14 30 syl5ibr dom glb K = 𝒫 Base K x y Base K × Base K x y dom glb K
32 31 adantl K Poset dom glb K = 𝒫 Base K x y Base K × Base K x y dom glb K
33 eqid glb K = glb K
34 8 a1i K Poset dom glb K = 𝒫 Base K x V
35 9 a1i K Poset dom glb K = 𝒫 Base K y V
36 33 26 27 34 35 meetdef K Poset dom glb K = 𝒫 Base K x y dom meet K x y dom glb K
37 32 36 sylibrd K Poset dom glb K = 𝒫 Base K x y Base K × Base K x y dom meet K
38 29 37 relssdv K Poset dom glb K = 𝒫 Base K Base K × Base K dom meet K
39 28 38 eqssd K Poset dom glb K = 𝒫 Base K dom meet K = Base K × Base K
40 39 ex K Poset dom glb K = 𝒫 Base K dom meet K = Base K × Base K
41 25 40 anim12d K Poset dom lub K = 𝒫 Base K dom glb K = 𝒫 Base K dom join K = Base K × Base K dom meet K = Base K × Base K
42 41 imdistani K Poset dom lub K = 𝒫 Base K dom glb K = 𝒫 Base K K Poset dom join K = Base K × Base K dom meet K = Base K × Base K
43 1 18 33 isclat K CLat K Poset dom lub K = 𝒫 Base K dom glb K = 𝒫 Base K
44 1 2 26 islat K Lat K Poset dom join K = Base K × Base K dom meet K = Base K × Base K
45 42 43 44 3imtr4i K CLat K Lat