Metamath Proof Explorer


Theorem clatlem

Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses clatlem.b B = Base K
clatlem.u U = lub K
clatlem.g G = glb K
Assertion clatlem K CLat S B U S B G S B

Proof

Step Hyp Ref Expression
1 clatlem.b B = Base K
2 clatlem.u U = lub K
3 clatlem.g G = glb K
4 simpl K CLat S B K CLat
5 1 fvexi B V
6 5 elpw2 S 𝒫 B S B
7 6 biimpri S B S 𝒫 B
8 7 adantl K CLat S B S 𝒫 B
9 1 2 3 isclat K CLat K Poset dom U = 𝒫 B dom G = 𝒫 B
10 9 biimpi K CLat K Poset dom U = 𝒫 B dom G = 𝒫 B
11 10 adantr K CLat S B K Poset dom U = 𝒫 B dom G = 𝒫 B
12 11 simprld K CLat S B dom U = 𝒫 B
13 8 12 eleqtrrd K CLat S B S dom U
14 1 2 4 13 lubcl K CLat S B U S B
15 11 simprrd K CLat S B dom G = 𝒫 B
16 8 15 eleqtrrd K CLat S B S dom G
17 1 3 4 16 glbcl K CLat S B G S B
18 14 17 jca K CLat S B U S B G S B