Metamath Proof Explorer


Theorem clatlubcl

Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses clatlubcl.b B = Base K
clatlubcl.u U = lub K
Assertion clatlubcl K CLat S B U S B

Proof

Step Hyp Ref Expression
1 clatlubcl.b B = Base K
2 clatlubcl.u U = lub K
3 eqid glb K = glb K
4 1 2 3 clatlem K CLat S B U S B glb K S B
5 4 simpld K CLat S B U S B