Metamath Proof Explorer


Theorem clatlubcl2

Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018)

Ref Expression
Hypotheses clatlubcl.b B = Base K
clatlubcl.u U = lub K
Assertion clatlubcl2 K CLat S B S dom U

Proof

Step Hyp Ref Expression
1 clatlubcl.b B = Base K
2 clatlubcl.u U = lub K
3 1 fvexi B V
4 3 elpw2 S 𝒫 B S B
5 4 biimpri S B S 𝒫 B
6 5 adantl K CLat S B S 𝒫 B
7 eqid glb K = glb K
8 1 2 7 isclat K CLat K Poset dom U = 𝒫 B dom glb K = 𝒫 B
9 simprl K Poset dom U = 𝒫 B dom glb K = 𝒫 B dom U = 𝒫 B
10 8 9 sylbi K CLat dom U = 𝒫 B
11 10 adantr K CLat S B dom U = 𝒫 B
12 6 11 eleqtrrd K CLat S B S dom U