Database
BASIC ORDER THEORY
Lattices
Complete lattices
clatpos
Next ⟩
clatlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
clatpos
Description:
A complete lattice is a poset.
(Contributed by
NM
, 8-Sep-2018)
Ref
Expression
Assertion
clatpos
⊢
K
∈
CLat
→
K
∈
Poset
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
K
=
Base
K
2
eqid
⊢
lub
⁡
K
=
lub
⁡
K
3
eqid
⊢
glb
⁡
K
=
glb
⁡
K
4
1
2
3
isclat
⊢
K
∈
CLat
↔
K
∈
Poset
∧
dom
⁡
lub
⁡
K
=
𝒫
Base
K
∧
dom
⁡
glb
⁡
K
=
𝒫
Base
K
5
4
simplbi
⊢
K
∈
CLat
→
K
∈
Poset