Database
BASIC TOPOLOGY
Topology
Closure and interior
cldcls
Next ⟩
incld
Metamath Proof Explorer
Ascii
Unicode
Theorem
cldcls
Description:
A closed subset equals its own closure.
(Contributed by
NM
, 15-Mar-2007)
Ref
Expression
Assertion
cldcls
⊢
S
∈
Clsd
⁡
J
→
cls
⁡
J
⁡
S
=
S
Proof
Step
Hyp
Ref
Expression
1
cldrcl
⊢
S
∈
Clsd
⁡
J
→
J
∈
Top
2
eqid
⊢
⋃
J
=
⋃
J
3
2
cldss
⊢
S
∈
Clsd
⁡
J
→
S
⊆
⋃
J
4
2
clsval
⊢
J
∈
Top
∧
S
⊆
⋃
J
→
cls
⁡
J
⁡
S
=
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
5
1
3
4
syl2anc
⊢
S
∈
Clsd
⁡
J
→
cls
⁡
J
⁡
S
=
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
6
intmin
⊢
S
∈
Clsd
⁡
J
→
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
=
S
7
5
6
eqtrd
⊢
S
∈
Clsd
⁡
J
→
cls
⁡
J
⁡
S
=
S