Metamath Proof Explorer


Theorem cldcls

Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007)

Ref Expression
Assertion cldcls S Clsd J cls J S = S

Proof

Step Hyp Ref Expression
1 cldrcl S Clsd J J Top
2 eqid J = J
3 2 cldss S Clsd J S J
4 2 clsval J Top S J cls J S = x Clsd J | S x
5 1 3 4 syl2anc S Clsd J cls J S = x Clsd J | S x
6 intmin S Clsd J x Clsd J | S x = S
7 5 6 eqtrd S Clsd J cls J S = S