Step |
Hyp |
Ref |
Expression |
1 |
|
nllytop |
|
2 |
|
resttop |
|
3 |
1 2
|
sylan |
|
4 |
|
elrest |
|
5 |
|
simpll |
|
6 |
|
simprl |
|
7 |
|
simprr |
|
8 |
7
|
elin1d |
|
9 |
|
nlly2i |
|
10 |
5 6 8 9
|
syl3anc |
|
11 |
3
|
ad2antrr |
|
12 |
1
|
ad3antrrr |
|
13 |
|
simpllr |
|
14 |
|
simprlr |
|
15 |
|
elrestr |
|
16 |
12 13 14 15
|
syl3anc |
|
17 |
|
simprr1 |
|
18 |
|
simplrr |
|
19 |
18
|
elin2d |
|
20 |
17 19
|
elind |
|
21 |
|
opnneip |
|
22 |
11 16 20 21
|
syl3anc |
|
23 |
|
simprr2 |
|
24 |
23
|
ssrind |
|
25 |
|
inss2 |
|
26 |
|
eqid |
|
27 |
26
|
cldss |
|
28 |
13 27
|
syl |
|
29 |
26
|
restuni |
|
30 |
12 28 29
|
syl2anc |
|
31 |
25 30
|
sseqtrid |
|
32 |
|
eqid |
|
33 |
32
|
ssnei2 |
|
34 |
11 22 24 31 33
|
syl22anc |
|
35 |
|
simprll |
|
36 |
35
|
elpwid |
|
37 |
36
|
ssrind |
|
38 |
|
vex |
|
39 |
38
|
inex1 |
|
40 |
39
|
elpw |
|
41 |
37 40
|
sylibr |
|
42 |
34 41
|
elind |
|
43 |
25
|
a1i |
|
44 |
|
restabs |
|
45 |
12 43 13 44
|
syl3anc |
|
46 |
|
inss1 |
|
47 |
46
|
a1i |
|
48 |
|
restabs |
|
49 |
12 47 35 48
|
syl3anc |
|
50 |
45 49
|
eqtr4d |
|
51 |
|
simprr3 |
|
52 |
|
incom |
|
53 |
|
eqid |
|
54 |
|
ineq1 |
|
55 |
54
|
rspceeqv |
|
56 |
13 53 55
|
sylancl |
|
57 |
|
simplrl |
|
58 |
|
elssuni |
|
59 |
57 58
|
syl |
|
60 |
36 59
|
sstrd |
|
61 |
26
|
restcld |
|
62 |
12 60 61
|
syl2anc |
|
63 |
56 62
|
mpbird |
|
64 |
52 63
|
eqeltrid |
|
65 |
|
cmpcld |
|
66 |
51 64 65
|
syl2anc |
|
67 |
50 66
|
eqeltrd |
|
68 |
|
oveq2 |
|
69 |
68
|
eleq1d |
|
70 |
69
|
rspcev |
|
71 |
42 67 70
|
syl2anc |
|
72 |
71
|
expr |
|
73 |
72
|
rexlimdvva |
|
74 |
10 73
|
mpd |
|
75 |
74
|
anassrs |
|
76 |
75
|
ralrimiva |
|
77 |
|
pweq |
|
78 |
77
|
ineq2d |
|
79 |
78
|
rexeqdv |
|
80 |
79
|
raleqbi1dv |
|
81 |
76 80
|
syl5ibrcom |
|
82 |
81
|
rexlimdva |
|
83 |
4 82
|
sylbid |
|
84 |
83
|
ralrimiv |
|
85 |
|
isnlly |
|
86 |
3 84 85
|
sylanbrc |
|