Metamath Proof Explorer


Theorem cldllycmp

Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest .) (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion cldllycmp J N-Locally Comp A Clsd J J 𝑡 A N-Locally Comp

Proof

Step Hyp Ref Expression
1 nllytop J N-Locally Comp J Top
2 resttop J Top A Clsd J J 𝑡 A Top
3 1 2 sylan J N-Locally Comp A Clsd J J 𝑡 A Top
4 elrest J N-Locally Comp A Clsd J x J 𝑡 A u J x = u A
5 simpll J N-Locally Comp A Clsd J u J y u A J N-Locally Comp
6 simprl J N-Locally Comp A Clsd J u J y u A u J
7 simprr J N-Locally Comp A Clsd J u J y u A y u A
8 7 elin1d J N-Locally Comp A Clsd J u J y u A y u
9 nlly2i J N-Locally Comp u J y u s 𝒫 u w J y w w s J 𝑡 s Comp
10 5 6 8 9 syl3anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp
11 3 ad2antrr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 A Top
12 1 ad3antrrr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J Top
13 simpllr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp A Clsd J
14 simprlr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp w J
15 elrestr J Top A Clsd J w J w A J 𝑡 A
16 12 13 14 15 syl3anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp w A J 𝑡 A
17 simprr1 J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp y w
18 simplrr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp y u A
19 18 elin2d J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp y A
20 17 19 elind J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp y w A
21 opnneip J 𝑡 A Top w A J 𝑡 A y w A w A nei J 𝑡 A y
22 11 16 20 21 syl3anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp w A nei J 𝑡 A y
23 simprr2 J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp w s
24 23 ssrind J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp w A s A
25 inss2 s A A
26 eqid J = J
27 26 cldss A Clsd J A J
28 13 27 syl J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp A J
29 26 restuni J Top A J A = J 𝑡 A
30 12 28 29 syl2anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp A = J 𝑡 A
31 25 30 sseqtrid J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A J 𝑡 A
32 eqid J 𝑡 A = J 𝑡 A
33 32 ssnei2 J 𝑡 A Top w A nei J 𝑡 A y w A s A s A J 𝑡 A s A nei J 𝑡 A y
34 11 22 24 31 33 syl22anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A nei J 𝑡 A y
35 simprll J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s 𝒫 u
36 35 elpwid J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s u
37 36 ssrind J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A u A
38 vex s V
39 38 inex1 s A V
40 39 elpw s A 𝒫 u A s A u A
41 37 40 sylibr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A 𝒫 u A
42 34 41 elind J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A nei J 𝑡 A y 𝒫 u A
43 25 a1i J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A A
44 restabs J Top s A A A Clsd J J 𝑡 A 𝑡 s A = J 𝑡 s A
45 12 43 13 44 syl3anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 A 𝑡 s A = J 𝑡 s A
46 inss1 s A s
47 46 a1i J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A s
48 restabs J Top s A s s 𝒫 u J 𝑡 s 𝑡 s A = J 𝑡 s A
49 12 47 35 48 syl3anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 s 𝑡 s A = J 𝑡 s A
50 45 49 eqtr4d J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 A 𝑡 s A = J 𝑡 s 𝑡 s A
51 simprr3 J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 s Comp
52 incom s A = A s
53 eqid A s = A s
54 ineq1 v = A v s = A s
55 54 rspceeqv A Clsd J A s = A s v Clsd J A s = v s
56 13 53 55 sylancl J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp v Clsd J A s = v s
57 simplrl J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp u J
58 elssuni u J u J
59 57 58 syl J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp u J
60 36 59 sstrd J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s J
61 26 restcld J Top s J A s Clsd J 𝑡 s v Clsd J A s = v s
62 12 60 61 syl2anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp A s Clsd J 𝑡 s v Clsd J A s = v s
63 56 62 mpbird J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp A s Clsd J 𝑡 s
64 52 63 eqeltrid J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp s A Clsd J 𝑡 s
65 cmpcld J 𝑡 s Comp s A Clsd J 𝑡 s J 𝑡 s 𝑡 s A Comp
66 51 64 65 syl2anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 s 𝑡 s A Comp
67 50 66 eqeltrd J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp J 𝑡 A 𝑡 s A Comp
68 oveq2 v = s A J 𝑡 A 𝑡 v = J 𝑡 A 𝑡 s A
69 68 eleq1d v = s A J 𝑡 A 𝑡 v Comp J 𝑡 A 𝑡 s A Comp
70 69 rspcev s A nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 s A Comp v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
71 42 67 70 syl2anc J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
72 71 expr J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
73 72 rexlimdvva J N-Locally Comp A Clsd J u J y u A s 𝒫 u w J y w w s J 𝑡 s Comp v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
74 10 73 mpd J N-Locally Comp A Clsd J u J y u A v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
75 74 anassrs J N-Locally Comp A Clsd J u J y u A v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
76 75 ralrimiva J N-Locally Comp A Clsd J u J y u A v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
77 pweq x = u A 𝒫 x = 𝒫 u A
78 77 ineq2d x = u A nei J 𝑡 A y 𝒫 x = nei J 𝑡 A y 𝒫 u A
79 78 rexeqdv x = u A v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
80 79 raleqbi1dv x = u A y x v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp y u A v nei J 𝑡 A y 𝒫 u A J 𝑡 A 𝑡 v Comp
81 76 80 syl5ibrcom J N-Locally Comp A Clsd J u J x = u A y x v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp
82 81 rexlimdva J N-Locally Comp A Clsd J u J x = u A y x v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp
83 4 82 sylbid J N-Locally Comp A Clsd J x J 𝑡 A y x v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp
84 83 ralrimiv J N-Locally Comp A Clsd J x J 𝑡 A y x v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp
85 isnlly J 𝑡 A N-Locally Comp J 𝑡 A Top x J 𝑡 A y x v nei J 𝑡 A y 𝒫 x J 𝑡 A 𝑡 v Comp
86 3 84 85 sylanbrc J N-Locally Comp A Clsd J J 𝑡 A N-Locally Comp