Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
clel3
Next ⟩
clel4g
Metamath Proof Explorer
Ascii
Unicode
Theorem
clel3
Description:
Alternate definition of membership in a set.
(Contributed by
NM
, 18-Aug-1993)
Ref
Expression
Hypothesis
clel3.1
⊢
B
∈
V
Assertion
clel3
⊢
A
∈
B
↔
∃
x
x
=
B
∧
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
clel3.1
⊢
B
∈
V
2
clel3g
⊢
B
∈
V
→
A
∈
B
↔
∃
x
x
=
B
∧
A
∈
x
3
1
2
ax-mp
⊢
A
∈
B
↔
∃
x
x
=
B
∧
A
∈
x