Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
clel3g
Next ⟩
clel3
Metamath Proof Explorer
Ascii
Unicode
Theorem
clel3g
Description:
Alternate definition of membership in a set.
(Contributed by
NM
, 13-Aug-2005)
Ref
Expression
Assertion
clel3g
⊢
B
∈
V
→
A
∈
B
↔
∃
x
x
=
B
∧
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢
x
=
B
→
A
∈
x
↔
A
∈
B
2
1
ceqsexgv
⊢
B
∈
V
→
∃
x
x
=
B
∧
A
∈
x
↔
A
∈
B
3
2
bicomd
⊢
B
∈
V
→
A
∈
B
↔
∃
x
x
=
B
∧
A
∈
x