Metamath Proof Explorer


Theorem clelsb1

Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Assertion clelsb1 y x x A y A

Proof

Step Hyp Ref Expression
1 eleq1w x = w x A w A
2 eleq1w w = y w A y A
3 1 2 sbievw2 y x x A y A