Metamath Proof Explorer


Theorem clelsb1f

Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). Usage of this theorem is discouraged because it depends on ax-13 . See clelsb1fw not requiring ax-13 , but extra disjoint variables. (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Revised by Thierry Arnoux, 13-Mar-2017) (Proof shortened by Wolf Lammen, 7-May-2023) (New usage is discouraged.)

Ref Expression
Hypothesis clelsb1f.1 _ x A
Assertion clelsb1f y x x A y A

Proof

Step Hyp Ref Expression
1 clelsb1f.1 _ x A
2 1 nfcri x w A
3 2 sbco2 y x x w w A y w w A
4 clelsb1 x w w A x A
5 4 sbbii y x x w w A y x x A
6 clelsb1 y w w A y A
7 3 5 6 3bitr3i y x x A y A