Metamath Proof Explorer


Theorem clelsb1fw

Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). Version of clelsb1f with a disjoint variable condition, which does not require ax-13 . (Contributed by Rodolfo Medina, 28-Apr-2010) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis clelsb1fw.1 _ x A
Assertion clelsb1fw y x x A y A

Proof

Step Hyp Ref Expression
1 clelsb1fw.1 _ x A
2 1 nfcri x w A
3 2 sbco2v y x x w w A y w w A
4 clelsb1 x w w A x A
5 4 sbbii y x x w w A y x x A
6 clelsb1 y w w A y A
7 3 5 6 3bitr3i y x x A y A