Metamath Proof Explorer


Theorem clelsb2

Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 ). (Contributed by Jim Kingdon, 22-Nov-2018)

Ref Expression
Assertion clelsb2 y x A x A y

Proof

Step Hyp Ref Expression
1 nfv x A w
2 1 sbco2 y x x w A w y w A w
3 nfv w A x
4 eleq2 w = x A w A x
5 3 4 sbie x w A w A x
6 5 sbbii y x x w A w y x A x
7 nfv w A y
8 eleq2 w = y A w A y
9 7 8 sbie y w A w A y
10 2 6 9 3bitr3i y x A x A y