Metamath Proof Explorer


Theorem clelsb2OLD

Description: Obsolete version of clelsb2 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion clelsb2OLD yxAxAy

Proof

Step Hyp Ref Expression
1 nfv xAw
2 1 sbco2 yxxwAwywAw
3 nfv wAx
4 eleq2 w=xAwAx
5 3 4 sbie xwAwAx
6 5 sbbii yxxwAwyxAx
7 nfv wAy
8 eleq2 w=yAwAy
9 7 8 sbie ywAwAy
10 2 6 9 3bitr3i yxAxAy