Metamath Proof Explorer


Theorem cleqf

Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqh . (Contributed by NM, 26-May-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 17-Nov-2019) Avoid ax-13 . (Revised by Wolf Lammen, 10-May-2023) Avoid ax-10 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses cleqf.1 _ x A
cleqf.2 _ x B
Assertion cleqf A = B x x A x B

Proof

Step Hyp Ref Expression
1 cleqf.1 _ x A
2 cleqf.2 _ x B
3 dfcleq A = B y y A y B
4 nfv y x A x B
5 1 nfcri x y A
6 2 nfcri x y B
7 5 6 nfbi x y A y B
8 eleq1w x = y x A y A
9 eleq1w x = y x B y B
10 8 9 bibi12d x = y x A x B y A y B
11 4 7 10 cbvalv1 x x A x B y y A y B
12 3 11 bitr4i A = B x x A x B